K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2017

A B C M D x I

a/ Xét \(\Delta ABM\)\(\Delta ACM\) có:

\(AM\) cạnh chung

\(AB=AC\left(gt\right)\)

\(MB=MC\) ( M là trung điểm BC )

Do đó \(\Delta ABM=\Delta ACM\left(c.c.c\right)\)

b/ Xét \(\Delta AMC\)\(\Delta DMB\) có:

\(BM=CM\left(gt\right)\)

\(\widehat{BMD}=\widehat{CMA}\) ( đối đỉnh )

\(MD=MA\left(gt\right)\)

Do đó \(\Delta AMC=\Delta DMB\left(c.g.c\right)\)

\(\Rightarrow AC=BD\) ( cạnh tương ứng )

c/ Vì \(\Delta AMC=\Delta DMB\left(cmt\right)\Rightarrow\widehat{MBD}=\widehat{MCA}\)( góc tương ứng )

Xét hai vị trí này là hai vị trí so le trong mà bằng nhau, suy ra \(AB\text{//}CD\)

17 tháng 12 2017

a/ Xét ΔABMΔABMΔACMΔACM có:

AMAM cạnh chung

AB=AC(gt)AB=AC(gt)

MB=MCMB=MC ( M là trung điểm BC )

Do đó ΔABM=ΔACM(c.c.c)ΔABM=ΔACM(c.c.c)

b/ Xét ΔAMCΔAMCΔDMBΔDMB có:

BM=CM(gt)BM=CM(gt)

ˆBMD=ˆCMABMD^=CMA^ ( đối đỉnh )

MD=MA(gt)MD=MA(gt)

Do đó ΔAMC=ΔDMB(c.g.c)ΔAMC=ΔDMB(c.g.c)

⇒AC=BD⇒AC=BD ( cạnh tương ứng )

c/ Vì ΔAMC=ΔDMB(cmt)⇒ˆMBD=ˆMCAΔAMC=ΔDMB(cmt)⇒MBD^=MCA^( góc tương ứng )

Xét hai vị trí này là hai vị trí so le trong mà bằng nhau, suy ra AB//CD

bn hok tốt

mk ko vẽ hik đâu

5 tháng 12 2021

đang làm

 
29 tháng 12 2021

a: Xét ΔABM và ΔACM có

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

29 tháng 12 2021

bạn biết làm câu c ko mình không biết làm câu c 

16 tháng 12 2018

a/                       - AB = AC ( gt )

ABM = ACM vì {  - AM chung 

     (c.c.c)            - MB = MC ( m là trung điểm )

b/ AB // DC k phải AB // BC 

T/g ABM = t/g DCM ( c.g.c)

AM = DM ( gt )

Góc AMB = DMC ( đđ )

BM = CM ( gt )

Có ABM = DCM ( t/g ABM = t/g DCM )

Lại ở vị trí slt 

=> AB // DC

c/ 

AB = AC ( gt )

=> ABC cân tại A

Có AM là trung tuyến ( m là trug điểm )

=> AM là đường cao ABC 

=> AM vuông góc BC 

16 tháng 1

 

a) Xét ΔAMB và ΔDMC có:

\(AM=CM\) (gt) 

\(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh) 

\(BM=CM\) (M là trung điểm của BC) 

\(\Rightarrow\text{Δ}AMB=\text{Δ}DMC\left(c.g.c\right)\)

b) Ta có: \(\text{Δ}AMB=\text{Δ}DMC\left(cmt\right)\)

\(\Rightarrow AB=DC\) (2 cạnh t.ứng)  

c) Ta có: \(\text{Δ}AMB=\text{Δ}DMC\left(cmt\right)\)

\(\Rightarrow\widehat{MAB}=\widehat{MDC}\) (hai góc t.ứng) 

Mà hai góc này ở vị trí so le trong 

\(\Rightarrow AB//CD\)

20 tháng 12 2023

loading...  loading...  loading...