K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2017

Ta có: \(3^{n+1}+3^{n+2}+3^{n+3}\)

\(=3^n\left(3 +9+27\right)\)

\(=3^n.39=3^n.3.13⋮3\) \(\forall n\in N\)

-> ĐPCM.

17 tháng 12 2018

bai 1 

26 - |x +9| = -13

|x + 9|= 26 - (-13)

|x + 9| = 39

        x  =39 + 9

        x = 48

15 - |x - 31| = 11

       |x - 31| = 15 - 11

       |x - 31| = 4

                x = 4 + 31

                x = 35

17 tháng 12 2018

Bài 1:

26 - |x+9| = -13

|x+9| = 39

TH1: x + 9 = 39 => x = 30

TH2: x + 9 = -39 => x = - 48

KL:...

b) 15 - | x-31| = 11

|x-31| = 4

TH1: x-31 = 4 => ...

TH2: x-31 = -4 =>...

1 tháng 4 2020

Đề sai thì phải bạn ơi,mình thay đổi đề thành chứng minh \(5^{n+3}-2^{n+3}+5^{n+2}-3^{n+1}⋮60\) nhưng mình thử lại không đúng bạn ạ,bạn thử sửa lại xem sao nhé !

15 tháng 6 2017

a) Giải:

Đặt \(A_n=11^{n+2}+12^{2n+1}\)\((*)\) Với \(n=0\) ta có:

\(A_0=11^2+12^1=133\) \(⋮133\Rightarrow\) \((*)\) đúng

Giả sử \((*)\) đúng đến giá trị \(k=n\) tức là:

\(B_k=11^{k+2}+12^{2k+1}\) \(⋮133\left(1\right)\)

Xét \(B_{k+1}-B_k\)

\(=11^{k+1+2}+12^{2\left(k+1\right)+1}-\left(11^{k+2}+12^{2k+1}\right)\)

\(=11^{k+3}-11^{k+2}+12^{2k+3}-12^{2k+1}\)

\(=10.11^{k+2}+143.12^{2k+1}\)

\(=10.121.11^k+143.12.144^k\)

\(\equiv\) \(10.121.11^k+10.12.11^k\)

\(\equiv\) \(10.11^k\left(121+12\right)\) \(\equiv\) \(0\left(mod133\right)\)

Theo giả thiết quy nạy \(\left(1\right)\) ta có: \(B_k⋮133\Leftrightarrow B_{k+1}⋮133\)

Hay \((*)\) đúng với \(n=k+1\) \(\Rightarrow\) Đpcm

28 tháng 10 2021

giời ơi lớp 6 mà cũng ko biết, bó tay

28 tháng 10 2021

ủa bn Minh Anh 6A Lê bn ấy ko biết mới hỏi chứ

4 tháng 10 2018
31 tháng 3 2023

Ai có lời giải k ạ

25 tháng 9 2017

Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3

=> ĐPCM;

3 tháng 10 2019

A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6