Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề sai thì phải bạn ơi,mình thay đổi đề thành chứng minh \(5^{n+3}-2^{n+3}+5^{n+2}-3^{n+1}⋮60\) nhưng mình thử lại không đúng bạn ạ,bạn thử sửa lại xem sao nhé !
Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3
=> ĐPCM;
A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6
\(A=1+3+3^2+3^3+...+3^{3n}+3^{3n+1}+3^{3n+2}\)
\(A=1.\left(1+3+9+\right)+3^3.\left(1+3+9\right)+3^6.\left(1+3+9\right)+...+3^{3n}.\left(1+3+9\right)\)
\(A=1.13+3^3.13+3^6.13+....+3^n.13\)
\(A=13.\left(1+3^3+3^6+...+3^{3n}\right)\)⋮ \(13\)
Vậy \(A\) ⋮ \(13\) ∀ \(n\)
Bài 1:
Xét hiệu: 6(x+7y) - 6x+11y = 6x+42y-6x+11y = 31y
Vì 6x+11y chia hết cho 31, 31y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Mà (6;31)=1 => x+7y chia hết cho 31
Bài 3:
a,n2+3n-13 chia hết cho n+3
=>n(n+3)-13 chia hết cho n+3
=>13 chia hết cho n+3
=>n+3 E Ư(13)={1;-1;13;-13}
=>n E {-2;-4;10;-16}
d,n2+3 chia hết cho n-1
=>n2-n+n-1+4 chia hết cho n-1
=>n(n-1)+(n-1)+4 chia hết cho n-1
=>4 chia hết cho n-1
=>n-1 E Ư(4)={1;-1;2;-2;4;-4}
=>n E {2;0;3;-1;5;-3}
Mình nghĩ đề là 33n+1
33n+2+5.33n+1
33n.32+5.33n.2
33n.9+33n.10
=>33n.19\(⋮\)19
Ta có: \(3^{n+1}+3^{n+2}+3^{n+3}\)
\(=3^n\left(3 +9+27\right)\)
\(=3^n.39=3^n.3.13⋮3\) \(\forall n\in N\)
-> ĐPCM.