K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2018

undefined

2 tháng 2 2021

a/ Xét tứ giác DPMQ có

\(\widehat{EDF}=\widehat{MQD}=\widehat{MPD}=90^o\)

=> Tứ giác DPMQ là hcn

b/ Để hcn DPMQ là hình vuông thì DM là tia pg ^EDF

c/ Có I đx M qua DE

=> DE là đường t/trực của IM

=> DI = DM (1)

=> t/g DIM cân tại D có DE là đường trung trực

=> DE đồng thời là đường pg

=> \(\widehat{IDE}=\widehat{EDM}\) (2) 

CMTT : DM = DK (3) ; \(\widehat{KDF}=\widehat{FDM}\) (4)

Từ (2) ; (4)

=> \(\widehat{IDE}+\widehat{EDF}+\widehat{KDF}=\widehat{IDK}=180^o\)

=> I,D,K thẳng hàng 

Từ (1) ; (3)=> ID = DK

Do đó D là trđ IK

=> I đx K qua D

6 tháng 12 2021

bạn tự làm

 

4 tháng 12 2017

a, Tứ giác DPQM là hình chứ nhật vì có 3góc vuông ( D = Q = P= 90 độ)

b, Để DPMQ là hình vuông thì DM là tia pg của D. 

Vậy Mlà giao tỉa pg góc D và EF để DPMQ là hình vuông.

c, Ta có: Góc MDP và HDP đối xứng qua DE nên MDP = HDP   

Góc MDQ và GDQ đối xứng qua DF nên MDQ = GDQ 

HDG = HDP + MDP + MDQ+ GDQ = 2(MDP + MDQ)= 2.90 180 độ.(2)

HD và MD đối xứng qua ED nên HD = MD

GD và MD đối xứng qua DF nên GD = MD 

Suy ra HD = GD (1)

 từ (1) và (2) suy ra H đối xứng với G qua D

14 tháng 12 2016

Bạn có chắc là bạn ghi đúng để không vậy.

14 tháng 12 2016

Cho tam giác DEF vuông tại D . Lấy M bất kì trên EF (M khác E,F) kẻ MP vuông góc với DE , kẻ MQ vuông góc với DF. 

a, Tứ giác PMQD là hình gì ?

b,Tìm  vị trí điểm M để PMQD là hình vuông.

" Minh chinh de ti nha "

a, Xét tứ giác PMQD co : 

goc D=Q=90

Mà trong 1 tứ giác có 3 góc vuông là HCN

Vậy tứ giác PMQD là HCN

b, Không biết 

14 tháng 4 2020

a) Xét tam giác DEH và tam giác DFH ta có:

        DE = DF ( tam giác DEF cân tại D )

        DEH = DFH ( tam giác DEF cân tại D )

        EH = EF ( H là trung điểm của EF )

=> tam giác DEH = tam giác DFH ( c.g.c) (dpcm)

=> DHE=DHF(hai góc tương ứng)

Mà DHE+DHF=180 độ  =>DHE=DHF=180 độ / 2 = 90 độ ( góc vuông ) hay DH vuông góc với EF ( dpcm )

 b) Xét tam giác MEH và tam giac NFH ta có:

          EH=FH(theo a)

          MEH=NFH(theo a)

  => tam giác MEH = tam giác NFH ( ch-gn)

  => HM=HN ( 2 cạnh tương ứng ) hay tam giác HMN cân tại H ( dpcm )

c) Ta có : +) DM+ME=DE =>DM=DE-ME

                +) DN+NF=DF => DN=DF-NF

Mà DE=DF(theo a)   ;     ME=NF( theo b tam giác MEH=tam giác NFH)

=>DM=DN => tam giác DMN cân tại D 

Xét tam giac cân DMN ta có:

     DMN=DNM=180-MDN/2      (*)

Xét tam giác cân DEF ta có:

     DEF=DFE =180-MDN/2       (*)

Từ (*) và (*) Suy ra góc DMN = góc DEF

Mà DMN và DEF ở vị trí đồng vị

=> MN//EF (dpcm)

d) Xét tam giác DEK và tam giác DFK ta có:

        DK là cạnh chung

        DE=DF(theo a)

    => tam giác DEK= tam giác DFK(ch-cgv)

   =>DKE=DKF(2 góc tương ứng)

   =>DK là tia phân giác của góc EDF       (1)

Theo a tam giac DEH= tam giac DFH(c.g.c)

   =>EDH=FDH(2 góc tương ứng)

   =>DH là tia phân giác của góc EDF        (2)

Từ (1) và (2) Suy ra D,H,K thẳng hàng (dpcm)

a: góc MDH=90 độ-góc DMH

=90 độ-2*góc MDF

=90 độ-2*góc E

=góc F+góc E-2*góc E

=góc F-gócE

b: (EF+DH)^2-(DF+DE)^2

=EF^2+2*EF*DH+DH^2-DF^2-DE^2-2*DF*DE

=DH^2>0

=>EF+DH>DF+DE
=>EF-DE>DF-DH

23 tháng 12 2021

a/ Xét tứ giác DPMQ có

EDF=MQD=ˆMPD=90oEDF^=MQD^=MPD^=90o

=> Tứ giác DPMQ là hcn

b/ Để hcn DPMQ là hình vuông thì DM là tia pg ^EDF

c/ Có I đx M qua DE

=> DE là đường t/trực của IM

=> DI = DM (1)

=> t/g DIM cân tại D có DE là đường trung trực

=> DE đồng thời là đường pg

=> ˆIDE=ˆEDMIDE^=EDM^ (2) 

CMTT : DM = DK (3) ; ˆKDF=ˆFDMKDF^=FDM^ (4)

Từ (2) ; (4)

=> ∠IDE+EDF+KDF=IDK=180oIDE^+EDF^+KDF^=IDK^=180o

=> I,D,K thẳng hàng 

Từ (1) ; (3)=> ID = DK

Do đó D là trđ IK

=> I đx K qua D