Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Tứ giác DPQM là hình chứ nhật vì có 3góc vuông ( D = Q = P= 90 độ)
b, Để DPMQ là hình vuông thì DM là tia pg của D.
Vậy Mlà giao tỉa pg góc D và EF để DPMQ là hình vuông.
c, Ta có: Góc MDP và HDP đối xứng qua DE nên MDP = HDP
Góc MDQ và GDQ đối xứng qua DF nên MDQ = GDQ
HDG = HDP + MDP + MDQ+ GDQ = 2(MDP + MDQ)= 2.90 180 độ.(2)
HD và MD đối xứng qua ED nên HD = MD
GD và MD đối xứng qua DF nên GD = MD
Suy ra HD = GD (1)
từ (1) và (2) suy ra H đối xứng với G qua D
Tình hình kinh doanh khác thì cũncũng khôngkhông khí ckhí thếthế nhỉ mình cũng không phải ai muốn làm gì có ai biết mấy bạn cứ nói thẳng ra luôn rồi đó bác ah bác nào dùng rồi cho vào túi nôn thì nó vẫn còn nhiều người dùng có sẽ không còncòn được nó đâu phải chỉ là những thứ khác thì không thể nào có thể
a) Xét tứ giác EDFH có K là trung điểm của EF
K là trung điểm của DH (vì H đối xứng với D qua K)
\(\widehat{FDE}=90^0\)
=> tứ giác EDFH là hình chữ nhật
Vật tứ giác EDFH là hình chữ nhật
b) Có M đối xứng với K qua DF và cắt MK cắt DF tại N
=> N là trung điểm của DF ; N là trung điểm của M
Xét \(\Delta DEF\) vuông tại D có DK là đường trung tuyến
=> DK=KF=EK
Xét tứ giác DMFK có N là trung điểm của DF
N là trung điểm của MK
KD=KF
=> tứ giác DMFK là hình thoi
Vậy tứ giác DMFK là hình thoi
c) Có tứ giác EDFH là hình chữ nhật
=> DK=KH;DK//KH
Mà MF=DK;DK//MF (do tứ giác DMFK là hình thoi)
=> MF=KH;MF//KH
Xét tứ giác MFHK có MF=KH
MF//KH
=> tứ giác MFHK là hình bình hành
=> G là trung điểm của MH (vì MH cắt EF tại G)
Xét \(\Delta MKH\) có G là trung điểm của MH
N là trung điểm của MK
=> NG là đường trung bình của \(\Delta MKH\)
=> NG = \(\dfrac{1}{2}\) KH
Mà KH=\(\dfrac{1}{2}\) DK,DK=EF (vì tứ giác EDFH là hình chữ nhật)
=> NG=\(\dfrac{1}{4}\) EF
Vậy NG=\(\dfrac{1}{4}\) EF hay EF=4NG
Câu cuối mình làm hơi tắt một chút bạn nhé
Chúc bạn học tốt :))
a: Xét ΔDEF có
N là trung điểm của EF
P là trung điểm của DF
Do đó: NP là đường trung bình
=>NP//DE
DN=EF/2=10(cm)
a: EF=5cm
DM=2,5cm
b: Xét tứ giác DENF có
M là trung điểm của EF
M là trung điểm của DN
Do đó: DENF là hình bình hành
mà \(\widehat{EDF}=90^0\)
nên DENF là hình chữ nhật
c: Xét tứ giác FBEA có
FB//EA
FB=EA
Do đó: FBEA là hình bình hành
Suy ra: Hai đường chéo FE và BA cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của FE
nên M là trung điểm của BA
hay M,A,B thẳng hàng
a) Xét $\Delta DME$ và $\Delta NMF$ có:
$EM = MF$ ($M$ là trung điểm của $EF$);
$DM = MN$ ($N$ đối xứng với D qua $M$);
$\widehat{EMD} = \widehat{NMF}$ (hai góc đối đỉnh);
Suy ra $\Delta DME$ và $\Delta NMF$ (c.g.c).
Suy ra $DE = NF$
và $DE$ // $NF$ (do hai góc so le trong $\widehat{MED}$ và $\widehat{MFN}$ bằng nhau).
Do đó $DENF$ là hình bình hành, có một góc vuông nên $DENF$ là hình chữ nhật em nhé.
b) Xét tam giác $DEF$ vuông tại $D$ có:
$DE^2 + DF^2 = EF^2$ suy ra $EF = 5$ cm;
Mà $DM = \dfrac12 DN$ và $DN = EF$ nên $DM = 2,5$ cm.
a/ Xét tứ giác DPMQ có
∠EDF=∠MQD=ˆMPD=90oEDF^=MQD^=MPD^=90o
=> Tứ giác DPMQ là hcn
b/ Để hcn DPMQ là hình vuông thì DM là tia pg ^EDF
c/ Có I đx M qua DE
=> DE là đường t/trực của IM
=> DI = DM (1)
=> t/g DIM cân tại D có DE là đường trung trực
=> DE đồng thời là đường pg
=> ˆIDE=ˆEDMIDE^=EDM^ (2)
CMTT : DM = DK (3) ; ˆKDF=ˆFDMKDF^=FDM^ (4)
Từ (2) ; (4)
=> ∠IDE+∠EDF+∠KDF=∠IDK=180oIDE^+EDF^+KDF^=IDK^=180o
=> I,D,K thẳng hàng
Từ (1) ; (3)=> ID = DK
Do đó D là trđ IK
=> I đx K qua D