Cho \(\frac{a}{b}=\frac{c}{d}\). Chứng minh rằng \(\frac{a^{1994}+c^{1994}}{b^{1994}+d^{1994}}\)\(=\frac{\left(a+c\right)^{1994}}{\left(b+d\right)^{1994}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^{1994}}{b^{1994}}=\frac{c^{1994}}{d^{1994}}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
\(\frac{a^{1994}}{b^{1994}}=\frac{\left(a+c\right)^{1994}}{\left(b+d\right)^{1994}}\)(1)
\(\frac{a^{1994}}{b^{1994}}=\frac{c^{1994}}{d^{1994}}=\frac{a^{1994}+c^{1994}}{b^{1994}+d^{1994}}\)(2)
từ (1) và (2) => \(\frac{a^{1994}+c^{1994}}{b^{1994}+d^{1994}}=\frac{\left(a+c\right)^{1994}}{\left(b+d\right)^{1994}}\left(đpcm\right)\)
\(\)
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)(Tính chất dãy tỉ số bằng nhau)
=> \(\frac{a^{1994}}{b^{1994}}=\frac{c^{1994}}{d^{1994}}=\frac{\left(a+c\right)^{1994}}{\left(b+d\right)^{1994}}=\frac{a^{1994}+c^{1994}}{b^{1994}+d^{1994}}\)(Tính chất dãy tỉ số bằng nhau)
=> \(\frac{\left(a+c\right)^{1994}}{\left(b+d\right)^{1994}}=\frac{a^{1994}+c^{1994}}{b^{1994}+d^{1994}}\)
=> Đpcm
Câu 2 tớ đăng phía dưới rồi đó.
Câu 3 đang định đăng lên thì cậu đăng là sao hả?
Đặt \(x-\frac{a+b}{2}=X\)
\(\Rightarrow y=\left(X-\frac{a-b}{2}\right)^{1994}+\left(X+\frac{a-b}{2}\right)^{1994}\)
\(y\left(-X\right)=\left(-X-\frac{a-b}{2}\right)^{1994}+\left(-X+\frac{a-b}{2}\right)^{1994}\)
\(=\left(X+\frac{a-b}{2}\right)^{1994}+\left(X-\frac{a-b}{2}\right)^{1994}=y\left(X\right)\)
\(\Rightarrow y\left(X\right)\) là hàm chẵn \(\Rightarrow\) đồ thị hàm số đối xứng qua trục \(X=0\) hay đồ thị hàm \(y\left(x\right)\) đối xứng qua trục \(x-\frac{a+b}{2}=0\Leftrightarrow x=\frac{a+b}{2}\)
$\left ( a+b\sqrt{2} \right )^{1994}+\left ( c+d\sqrt{2} \right )^{1994}= 5+4\sqrt{2}$ - Đại số - Diễn đàn Toán học
\(\frac{a}{b}=\frac{c}{d}\)=\(\frac{a+c}{b+d}\)
=> \(\frac{a^{1994}}{b^{1994}}=\frac{c^{1994}}{d^{1994}}\)\(=\frac{\left(a+c\right)^{1994}}{\left(b+d\right)^{1994}}\)
=> \(\frac{a^{1994}+c^{1994}}{b^{1994}+d^{1994}}=\frac{\left(a+c\right)^{1994}}{\left(b+d\right)^{1994}}\)
=> dpcm