\(\frac{a}{b}=\frac{c}{d}\)

CMR \(\frac{a^{1994}+c^{1994}}...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2018

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^{1994}}{b^{1994}}=\frac{c^{1994}}{d^{1994}}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

\(\frac{a^{1994}}{b^{1994}}=\frac{\left(a+c\right)^{1994}}{\left(b+d\right)^{1994}}\)(1)

\(\frac{a^{1994}}{b^{1994}}=\frac{c^{1994}}{d^{1994}}=\frac{a^{1994}+c^{1994}}{b^{1994}+d^{1994}}\)(2)

từ (1) và (2) => \(\frac{a^{1994}+c^{1994}}{b^{1994}+d^{1994}}=\frac{\left(a+c\right)^{1994}}{\left(b+d\right)^{1994}}\left(đpcm\right)\)

\(\)

12 tháng 10 2015

\(\frac{a}{b}=\frac{c}{d}\)=\(\frac{a+c}{b+d}\)

=> \(\frac{a^{1994}}{b^{1994}}=\frac{c^{1994}}{d^{1994}}\)\(=\frac{\left(a+c\right)^{1994}}{\left(b+d\right)^{1994}}\)

=> \(\frac{a^{1994}+c^{1994}}{b^{1994}+d^{1994}}=\frac{\left(a+c\right)^{1994}}{\left(b+d\right)^{1994}}\)

=> dpcm

1 tháng 10 2015

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)(Tính chất dãy tỉ số bằng nhau)

=> \(\frac{a^{1994}}{b^{1994}}=\frac{c^{1994}}{d^{1994}}=\frac{\left(a+c\right)^{1994}}{\left(b+d\right)^{1994}}=\frac{a^{1994}+c^{1994}}{b^{1994}+d^{1994}}\)(Tính chất dãy tỉ số bằng nhau)

=> \(\frac{\left(a+c\right)^{1994}}{\left(b+d\right)^{1994}}=\frac{a^{1994}+c^{1994}}{b^{1994}+d^{1994}}\)

=> Đpcm


Câu 2 tớ đăng phía dưới rồi đó.

Câu 3 đang định đăng lên thì cậu đăng là sao hả?

24 tháng 6 2017

\(D=|x-1|+|x-4|=|x-1|+|4-x|\ge|x-1+4-x|=3\)

\(B=|1993-x|+|1994-x|=|1993-x|+|x-1994|\ge|1993-x+x-1994|=1\)

\(C=x^2+|y-2|-5\ge-5\)

24 tháng 6 2017

Để D nhỏ nhất => I x-1I bé nhất hoặc I x-4I bé nhất => x-1 =0 hoặc x-4=0

=> x= 1 hoặc x=4 

Vậy GTNN của D là: I 1-4I = 3 tại x= 1 hoặc x=4

B tương tự

Để C nhỏ nhất => x^2 bé nhất và I y - 2I bé nhất => x^2 = 0 và y-2 = 0

x= 0 và y=2

VaayjGTNN của C là -5 tại x=0 và y=2

21 tháng 3 2017

Theo đề bài ta có:

\(\hept{\begin{cases}\frac{4}{7}< \frac{a}{b}< \frac{2}{3}\\7a+4b=1994\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}7a>4b\\3a< 2b\\7a+4b=1994\end{cases}}\)

\(\Rightarrow7a+6a< 7a+4a=1994< 7a+7a\)

\(\Rightarrow13a< 1994< 14a\) 

\(\Rightarrow142,4< a< 153,3\)

\(\Rightarrow143\le a\le153\)(1)

Mà theo đề thì 7a + 4b = 1994 nên a phải là số chẵn (2)

Từ (1) và (2) ta suy ra a có thể là các giá trị sau: 144; 146; 148; 150; 152.

Thế ngược lại tìm ra b. (Giá trị nào thõa mãn thì nhận)

22 tháng 3 2017

4/7 < a/b<2/3

quy đồng ,ta có 

12/21 <a/b <14/21

a/b =13/21.suy ra a =13b/21 

thay a vào 7a +4b =1994 thì không thể có giá trị nguyên cho a và b .Mà a và b chỉ là số thập phân

6 tháng 10 2018

Xin được phép sửa đề =) Đề ban đầu sai òi!

a) Chứng minh rằng \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\) 

Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\). Theo t/c dãy tỉ số bằng nhau,ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)(1). Mặt khác,áp dụng dãy tỉ số bằng nhau lần nữa,ta cũng có:

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\) (2).Từ (1) và (2) ta có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}^{\left(đpcm\right)}\)

b) Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a^4}{c^4}=\frac{b^4}{d^4}=\left(\frac{a+b}{c+d}\right)^4=\left(\frac{a-b}{c-d}\right)^4\)(1). Mặt khác,theo tính chất dãy tỉ số bằng nhau ta cũng có:

\(\frac{a^4}{c^4}=\frac{b^4}{d^4}=\frac{a^4+b^4}{c^4+d^4}\) (2). Từ (1) và (2) ta có: \(\left(\frac{a-b}{c-d}\right)^4=\frac{a^4+b^4}{c^4+d^4}^{\left(đpcm\right)}\)

9 tháng 10 2018

Đang rỗi,ngồi giải lại bài này theo cách khác cho vui

Giải

a) CMR: \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=kb\\c=kd\end{cases}}\)

Ta có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(kb\right)^2+b^2}{\left(kd\right)^2+d^2}=\frac{k^2b^2+b^2}{k^2d^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\) (1)

Lại có: \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(kb+b\right)^2}{\left(kd+d\right)^2}=\frac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\frac{b^2}{d^2}\) (2)

Từ (1) và (2) ta có: \(\frac{a^2+b^2}{a^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}^{\left(đpcm\right)}\)

b)Tương tự như a)

6 tháng 10 2018

a) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

Thay a = bk, c = dk vào \(\frac{a^2+b^2}{c^2+d^2}\) và \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\), ta có:

\(\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\)

\(\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\frac{b^2\left(k+1\right)^2}{d^2\left(k+1\right)^2}=\frac{b^2}{d^2}\)

Vì \(\frac{b^2}{d^2}=\frac{b^2}{d^2}\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

Vậy \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\) với  \(\frac{a}{b}=\frac{c}{d}\)

b) Thay a = bk, c = dk vào \(\left(\frac{a-b}{c-d}\right)^4\)và \(\frac{a^4+b^4}{c^4+d^4}\), ta có:

\(\left(\frac{bk-b}{dk-d}\right)^4=\frac{\left(bk-b\right)^4}{\left(dk-d\right)^4}=\frac{\left[b\left(k-1\right)\right]^4}{\left[d\left(k-1\right)\right]^4}=\frac{b^4\left(k-1\right)^4}{d^4\left(k-1\right)^4}=\frac{b^4}{d^4}\)

\(\frac{\left(bk\right)^4+b^4}{\left(dk\right)^4+d^4}=\frac{b^4k^4+b^4}{d^4k^4+d^4}=\frac{b^4\left(k^4+1\right)}{d^4\left(k^4+1\right)}=\frac{b^4}{d^4}\)

Vì \(\frac{b^4}{d^4}=\frac{b^4}{d^4}\Rightarrow\left(\frac{a-b}{c-d}\right)^4=\frac{a^4+b^4}{c^4+d^4}\)

Vậy \(\left(\frac{a-b}{c-d}\right)^4=\frac{a^4+b^4}{c^4+d^4}\) với \(\frac{a}{b}=\frac{c}{d}\)

6 tháng 10 2018

sai đề rồi kìa bn êi