K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2021

Bài 1 : 

A=2+22+23+...+299+2100A=2+22+23+...+299+2100

⇒2A=22+23+24+...+2100+2101⇒2A=22+23+24+...+2100+2101

⇒A=2101−2⇒A=2101−2

B=3+32+33+...+399+3100B=3+32+33+...+399+3100

⇒3B=32+33+34+...+3100+3101⇒3B=32+33+34+...+3100+3101

Bài 2 :

2.Chứng minh rằng

212+312+213+214+315 chia hết cho 7

⇒2B=3101−3⇒2B=3101−3

⇒B=3101−32

23 tháng 7 2020

hơi vô lý

23 tháng 7 2020

Trả lời:

1, \(27^{20}-3^{56}=\left(3^3\right)^{20}-3^{56}\)

                          \(=3^{60}-3^{56}\)

                          \(=3^{55}.\left(3^5-3\right)\)

                          \(=3^{55}.\left(243-3\right)\)

                         \(=3^{55}\times240\)\(⋮240\)

Vậy \(27^{20}-3^{56}\)chia hết cho 240

2, Ta có: \(3a+7b⋮19\)

\(\Leftrightarrow2.\left(3a+7b\right)⋮19\)

\(\Leftrightarrow6a+14b⋮19\)

\(\Leftrightarrow6a+33b-19b⋮19\)

\(\Leftrightarrow3.\left(2a+11b\right)-19b⋮19\)

Do \(19b\)chia hết cho 19. Theo t/c chia hết của 1 hiệu thì \(3.\left(2a+11b\right)⋮19\Leftrightarrow2a+11b⋮19\)

Vậy \(2a+11b\)chia hết cho 19

15 tháng 9 2018
a) ba số này là ba sô tự nhiên liên tiếp => nó sẽ luôn luôn chia hết cho 2 Nếu m chia hết cho 3 biểu thúc cx chia hết cho 3 Nếu m chia 3 dư 1 thì m+2 chia hết cho 3=> biểu thúc chia hết cho 3 Nếu m chia 3 dư 2 thì m+1 chia hết cho 3 => biểu thúc chia hết cho 3 Ta thấy 2×3=6 => mà biểu thúc chia hết cho 2,3 => biểu thức chia hết cho 6 Còm câu b tương tự nha
15 tháng 9 2018

cần giải thêm câu b

1 tháng 11 2023

Câu 13

S = 1 + 2 + 2² + ... + 2¹⁰

2S = 2 + 2² + 2³ + ... + 2¹¹

S = 2S - S

= (2 + 2² + 2³ + ... + 2¹¹) - (1 + 2 + 2² + ... + 2¹⁰)

= 2¹¹ - 1

= 2048 - 1

= 2047

1 tháng 11 2023

Câu 14

3n + 2 = 3n - 6 + 8 = 3(n - 2) + 8

Để (3n + 2) ⋮ (n - 2) thì 8 ⋮ (n - 2)

⇒ n - 2 ∈ Ư(8) = {-8; -4; -2; -1; 1; 2; 4; 8}

⇒ n ∈ {-6; -2; 0; 1; 3; 4; 6; 10}

Mà n là số tự nhiên

⇒ n ∈ {0; 1; 3; 4; 6; 10}

11 tháng 3 2018

\(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)

\(\Leftrightarrow S=1\left(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\right)\)

\(\Leftrightarrow S-S=1+\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)

\(\Leftrightarrow S=1-\frac{1}{60}=\frac{59}{60}\)

14 tháng 8 2015

 

3^n+2 - 2^n+2 + 3^n - 2^n = (3n+2+3n)+(-2n+2-2n)

=3n.(32+1)-2n.(22+1)

=3n.10-2n.5

=3n.10-2n-1.2.5

=3n.10-2n-1.10

=10.(3n-2n-1)

Vậy 3^n+2 - 2^n+2 + 3^n - 2^n chia hết cho 10

 

13 tháng 11 2023

1: \(A=2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\)

\(=2\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)

\(=15\left(2+2^5+...+2^{97}\right)\)

\(=30\left(1+2^4+...+2^{96}\right)⋮30\)

2:

\(B=3+3^2+3^3+...+3^{2022}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2021}+3^{2022}\right)\)

\(=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{2020}\left(3+3^2\right)\)

\(=12\left(1+3^2+...+3^{2020}\right)⋮12\)

 

Các số hạng trong tổng \(A\) đều chia hết cho \(3\) nên \(\Rightarrow A⋮3\)

Vậy \(A⋮3\)

1 tháng 1

A=3+3^2+3^3+3^4+...+3^12

A=(3+3^2+3^3)+(3^4+3^5+3^6)+.....+(3^10+3^11+3^12)   (gộp nhóm)

A=3.(1+3+3^2)+3^4.(1+3+3^2)+......+3^10.(1+3+3^2)        (phân phối)

A=3.13+3^4.13+....+3^10.13

A=13.(3+3^4+....+3^10)

Vì 13⋮13

nên 13.(3+3^4+...+3^10)⋮13

=>A⋮13