K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHE và ΔCHB có

HA=HC

\(\widehat{AHE}=\widehat{CHB}\)

HE=HB

Do đó: ΔAHE=ΔCHB

b: Xét tứ giác ABCE có

H là trung điểm của BE

H là trung điểm của AC

Do đó:ABCE là hình bình hành

Suy ra: AE//BC và AE=BC

=>AF//BC và AF=BC

c: Xét tứ giác AFBC có 
AF//BC

AF=BC

Do đó: AFBC là hình bình hành

=>AB cắt FC tại trung điểm của mỗi đường

=>F,N,C thẳng hàng

a: Xét ΔAHB vuông tại H và ΔAHE vuông tại H có

AH chung

HB=HE

=>ΔAHB=ΔAHE

b: Xét tứ giác AECF có

I là trung điểm chung của AC và EF

=>AECF là hình bình hành

=>AF//EC

=>AF vuông góc AH

c: AECF là hình bình hành

=>CF=AE>HA

28 tháng 11 2015

Hình tự vẽ nhé!

a) Xét tam giác ABC và Tam giác ADE

Có: AD=AB(gt)

AE=AC(gt)

góc BAC= góc DAE( 2 góc đối đỉnh)

Vậy tam giác ABC = tam giác ADE (c-g-c)

b) Ta có tam giác ABC= tam giác ADE( chứng minh trên)

Suy ra góc EBA=góc ADC(2 góc tương ứng)

Vậy BE song song với DC ( có 2 góc so le trong bằng nhau)

 

28 tháng 11 2015

A E D B C 1 2 H K

a) Ta có : EC và DB là cặp góc đối đỉnh => góc A= góc A2

Xét tam giác ADE và tam giác ABC có :

EA = AC (gt)

BA = AD (gt)

góc A1 = góc A2 ( CM trên )

=> \(\Delta ADE=\Delta ABC\)    (c.g.c)    (đpcm)

b) Vì  \(\Delta ADE=\Delta ABC\) => góc AED = góc ACB  ( cặp góc tương ứng )

Mà hai góc này là cặp góc so le trong

=> BE // CD (đpcm)

c) Vì  \(\Delta ADE=\Delta ABC\)  => ED = BC ( cặp cạnh tương ứng )  

Vì H là trung điểm của BC => BH = HC = \(\frac{BC}{2}\)=> HC = \(\frac{ED}{2}\)(1)

Vì K là trung điểm của ED => EK = KD = \(\frac{ED}{2}\)(2)

Từ (1) và (2) => HC = EK

Xét tam giác AKE và tam giác AHC có :

góc AEK = ACH  (CM ở b)

AE = AC (gt)

EK = HC (CM trên)

=> \(\Delta AKE=\Delta AHC\) (c.g.c)

=> AK = AH (cặp cạnh tương ứng)

=> A là trung điểm của HK (đpcm)

Tick mk nha!!!

9 tháng 11 2017

26 tháng 11 2016

Ta có hình vẽ:

A B C K H M E

a) Xét Δ ABH và Δ AKH có:

BH = KH (gt)

AHB = AHK = 90o

AH là cạnh chung

Do đó, Δ ABH = Δ AKH (c.g.c) (đpcm)

b) Xét Δ AMK và Δ CME có:

MK = ME (gt)

AMK = CME (đối đỉnh)

AM = CM (gt)

Do đó, Δ AMK = Δ CME (c.g.c)

=> AK = EC (2 cạnh tương ứng) (1)

Δ ABH = Δ AKH (câu a)

=> AB = AK (2 cạnh tương ứng) (2)

Từ (1) và (2) => EC = AB (đpcm)

c) Xét Δ AME và Δ CMK có:

AM = CM (gt)

AME = CMK (đối đỉnh)

ME = MK (gt)

Do đó Δ AME = Δ CMK (c.g.c)

=> AEM = CKM (2 góc tương ứng)

Mà AEM và CKM là 2 góc so le trong nên AE // KC hay AE // BC (đpcm)

 

26 tháng 11 2016

A B K M C E H 1 2 3 4 1 1

Giải:
a) Xét \(\Delta ABH,\Delta AKH\) có:
\(BH=HK\left(gt\right)\)

\(\widehat{AHB}=\widehat{AHK}\)

AH: cạnh chung

\(\Rightarrow\Delta ABH=\Delta AKH\left(c-g-c\right)\)

b) Vì \(\Delta ABH=\Delta AKH\)

\(\Rightarrow AB=AK\) ( cạnh tương ứng ) (1)

Xét \(\Delta AMK,\Delta CME\) có:

\(AM=MC\left(=\frac{1}{2}AC\right)\)

\(\widehat{M_1}=\widehat{M_2}\) ( đối đỉnh )

\(EM=KM\left(gt\right)\)

\(\Rightarrow\Delta AMK=\Delta CME\left(c-g-c\right)\)

\(\Rightarrow EC=AK\) ( cạnh tương ứng ) (2)

Từ (1) và (2) \(\Rightarrow EC=AB\left(=AK\right)\)

c) Xét \(\Delta AME\)\(\Delta CMK\) có:
\(AM=MC\left(=\frac{1}{2}AC\right)\)

\(\widehat{M_3}=\widehat{M_4}\) ( đối đỉnh )

\(KM=EM\left(gt\right)\)

\(\Rightarrow\Delta AME=\Delta CMK\left(c-g-c\right)\)

\(\Rightarrow\widehat{E_1}=\widehat{K_1}\) ( góc tương ứng )

\(\widehat{E_1}\)\(\widehat{K_1}\) ở vị trí so le trong nên AE // KC hay AE // BC

Vậy a) \(\Delta ABH=\Delta AKH\)

b) EC = AB

c) AE // BC


 

19 tháng 12 2016

BE=AC hay AD bạn?

23 tháng 12 2016

a)Cho hàm số y=am x=m

Tìm m biết đồ thị hàm số đi qua điểm A (1;1)

b)Vẽ đồ thị hàm số với m tìm được