K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2021

b, bài này theo mình nghĩ chỉ có GTLN thôi, nếu có GTNN thì bày mình nhé :))  \(P=-\frac{3\sqrt{x}}{\sqrt{x}+3}=\frac{-3\left(\sqrt{x}+3\right)+9}{\sqrt{x}+3}=-3+\frac{9}{\sqrt{x}+3}\) 

Ta có : \(\sqrt{x}+3\ge3\Rightarrow\frac{9}{\sqrt{x}+3}\le\frac{9}{3}=3\)

\(\Rightarrow P=-3+\frac{9}{\sqrt{x}+3}\le-3+3=0\)

Dấu ''='' xảy ra khi x = 0 

Vậy GTLN của P bằng 0 tại x = 0 

e, \(P>-1\Leftrightarrow P+1>0\Leftrightarrow\frac{-3\sqrt{x}}{\sqrt{x}+3}+1>0\)

\(\Leftrightarrow\frac{-3\sqrt{x}+\sqrt{x}+3}{\sqrt{x}+3}>0\Leftrightarrow\frac{3-2\sqrt{x}}{\sqrt{x}+3}>0\Leftrightarrow\frac{2\sqrt{x}-3}{\sqrt{x}+3}< 0\)

\(\Rightarrow2\sqrt{x}-3< 0\Leftrightarrow x< \frac{9}{4}\)

Kết hợp với đk : \(0< x< \frac{9}{4}\)

g, Xét  \(P=-\frac{3\sqrt{x}}{\sqrt{x}+3}\) có \(\sqrt{x}\ge0\Rightarrow-3\sqrt{x}\le0\)mà \(\sqrt{x}+3>0\)

\(\Rightarrow P=-\frac{3\sqrt{x}}{\sqrt{x}+3}\le0\)

Xét \(1=\frac{\sqrt{x}+3}{\sqrt{x}+3}\)mà \(\sqrt{x}+3>0\)

Vậy P < 1 

27 tháng 7 2016

a) \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=1+\sqrt{2}\)

b)\(\frac{x-4}{2\left(\sqrt{x}+2\right)}\) (ĐK:x\(\ge0\))

\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{2\left(\sqrt{x}+2\right)}\)

\(=\frac{\sqrt{x}-2}{2}\)

c)\(\frac{x-5\sqrt{x}+6}{3\sqrt{x}-6}\) (ĐK:x\(\ge0;x\ne4\))

\(=\frac{x-3\sqrt{x}-2\sqrt{x}+6}{3\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)-2\left(\sqrt{x}-3\right)}{3\left(\sqrt{x}-2\right)}\)

\(=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{3\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}-3}{3}\)

27 tháng 7 2016

b) Tử \(x-4=\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\) (hằng đăngt thức số 3 )

3 tháng 9 2020

Ta có: \(A=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right).\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)    (   ĐK: \(x\ne0,\)\(x\ne9,\)\(x\ge3\))

     \(\Leftrightarrow A=\frac{\sqrt{x}.\left(3-\sqrt{x}\right)+x+9}{\left(3+\sqrt{x}\right).\left(3-\sqrt{x}\right)}.\frac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}.\left(\sqrt{x}-3\right)}\)

     \(\Leftrightarrow A=\frac{3\sqrt{x}-x+x+9}{\left(3+\sqrt{x}\right).\left(3-\sqrt{x}\right)}.\frac{2\sqrt{x}+4}{\sqrt{x}.\left(\sqrt{x}-3\right)}\)

     \(\Leftrightarrow A=\frac{3\sqrt{x}-9}{\left(3+\sqrt{x}\right).\left(3-\sqrt{x}\right)}.\frac{2\sqrt{x}+4}{\sqrt{x}.\left(\sqrt{x}-3\right)}\)

     \(\Leftrightarrow A=\frac{3\left(\sqrt{x}-3\right)}{\left(3+\sqrt{x}\right).\left(3-\sqrt{x}\right)}.\frac{2\sqrt{x}+4}{\sqrt{x}.\left(\sqrt{x}-3\right)}\)

     \(\Leftrightarrow A=\frac{3.\left(2\sqrt{x}+4\right)}{\left(9-x\right).\sqrt{x}}\)

     \(\Leftrightarrow A=\frac{6\sqrt{x}+12}{9\sqrt{x}-x}\)

10 tháng 9 2020

ĐKXĐ: x \(\ge\)0; x khác 9 (1)

a) B = \(\frac{1}{3-\sqrt{x}}+\frac{\sqrt{x}}{3+\sqrt{x}}-\frac{x+9}{x-9}\)

B = \(\frac{-\left(\sqrt{x}+3\right)+\sqrt{x}\left(\sqrt{x}-3\right)-x-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

B = \(\frac{-\sqrt{x}-3+x-3\sqrt{x}-x-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

B = \(\frac{-4\sqrt{x}-12}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

B = \(\frac{4\left(\sqrt{x}+3\right)}{\left(3-\sqrt{x}\right)\left(\sqrt{x}+3\right)}\)

B = \(\frac{4}{3-\sqrt{x}}\)

b) B > A <=> \(\frac{4}{3-\sqrt{x}}>1\) <=> \(\frac{4}{3-\sqrt{x}}-1>0\)

<=> \(\frac{4-3+\sqrt{x}}{3-\sqrt{x}}>0\)

<=> \(\frac{\sqrt{x}+1}{3-\sqrt{x}}>0\)

Do \(\sqrt{x}+1>0\) => \(3-\sqrt{x}>0\) <=> \(\sqrt{x}< 3\)

<=> \(x< 9\)

Kết hợp với đk (1)

=> \(0\le x< 9\)

25 tháng 4 2019

ĐKXĐ: x khác 1

\(M=\frac{x-\sqrt[3]{x}}{x-1}+\frac{1}{\sqrt[3]{x}-1}+\frac{1}{\sqrt[3]{x^2}+\sqrt[3]{x}+1}\)

\(=\frac{x-\sqrt[3]{x}}{x-1}+\frac{\sqrt[3]{x^2}+\sqrt[3]{x}+1+\sqrt[3]{x}-1}{\left(\sqrt[3]{x}-1\right)\left(\sqrt[3]{x^2}+\sqrt[3]{x}+1\right)}=\frac{x-\sqrt[3]{x}}{x-1}+\frac{\sqrt[3]{x^2}+2\sqrt[3]{x}}{\left(\sqrt[3]{x}\right)^3-1}\)

\(=\frac{x-\sqrt[3]{x}}{x-1}+\frac{\sqrt[3]{x^2}+2\sqrt[3]{x}}{x-1}=\frac{x+\sqrt[3]{x^2}+\sqrt[3]{x}}{x-1}=\frac{\sqrt[3]{x}\left(\sqrt[3]{x^2}+\sqrt[3]{x}+1\right)}{\left(\sqrt[3]{x}-1\right)\left(\sqrt[3]{x^2}+\sqrt[3]{x}+1\right)}\)

\(=\frac{\sqrt[3]{x}}{\sqrt[3]{x}-1}\)

bạn nhớ kiểm tra lại nhé

28 tháng 10 2016

Vậy cái điều kiện \(x\ne\sqrt{3}\)người ta cho chi bạn. Bạn nên để ý là cái điều kiện người ta cho là nhằm cho cái đó nó xác định chớ không cho tào lao đâu. x # 0 cũng là vì lý do đó nên mình chắc cái đề trong sách in sai

28 tháng 10 2016

Với điều kiện kèm theo thì mình chắc rằng cái đề phải là x - \(\sqrt{27}\) chứ không thể lad x - 27 được. Bạn xem lại đề nhé

13 tháng 9 2019

ĐK: \(x\ge-7\)

PT \(\Leftrightarrow\left(\sqrt[3]{x-8}-\left(x-8\right)\right)+\left[\sqrt{x+7}-4\right]+\left(x-9\right)\left(x^2+x+2\right)=0\)

\(\Leftrightarrow\frac{-\left(x-9\right)\left(x-7\right)\left(x-8\right)}{\left(\sqrt[3]{x-8}\right)^2+\left(x-8\right)\sqrt[3]{x-8}+\left(x-8\right)^2}+\frac{x-9}{\sqrt{x+7}+4}+\left(x-9\right)\left(x^2+x+2\right)=0\)

\(\Leftrightarrow\left(x-9\right)\left[x^2+x+2+\frac{1}{\sqrt{x+7}+4}-\frac{\left(x-7\right)\left(x-8\right)}{\left(\sqrt[3]{x-8}\right)^2+\left(x-8\right)\sqrt[3]{x-8}+\left(x-8\right)^2}\right]=0\)

\(\Leftrightarrow x=9\) 

P/s:em chả biết đánh giá cái ngoặc to thế nào nữa:((((

7 tháng 6 2021

\(B=\frac{3\sqrt{x}+1}{x+2\sqrt{x}-3}-\frac{2}{\sqrt{x}+3}\) ĐK : \(x\ge0;x\ne1\)

\(=\frac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{2}{\sqrt{x}+3}\)

\(=\frac{3\sqrt{x}+1-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{1}{\sqrt{x}-1}\)

7 tháng 6 2021

\(=\frac{3\sqrt{x}+1}{\left(\sqrt{x}+3\right)\cdot\left(\sqrt{x}-1\right)}-\frac{2}{\sqrt{x}+3}\)   

\(=\frac{3\sqrt{x}+1-2\cdot\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\cdot\left(\sqrt{x}-1\right)}\)   

\(=\frac{3\sqrt{x}+1-2\sqrt{x}+2}{\left(\sqrt{x}+3\right)\cdot\left(\sqrt{x}-1\right)}\)   

\(=\frac{\sqrt{x}+3}{\left(\sqrt{x}+3\right)\cdot\left(\sqrt{x}-1\right)}\)   

\(=\frac{1}{\sqrt{x}-1}\)

\(B=\frac{3\sqrt{x}+1}{x+2\sqrt{x}-3}-\frac{2}{\sqrt{x}+3}\)

\(=\frac{3\sqrt{x}+1-2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{3\sqrt{x}+1-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{1}{\sqrt{x}-1}\)

25 tháng 12 2016

đặt \(x=\frac{\sqrt{3}}{cost};\forall t\in\left(0;\frac{\pi}{2}\right)\Rightarrow tant>0\)

\(dx=d\left(\frac{\sqrt{3}}{cost}\right)=\frac{-\sqrt{3}sint}{cos^2t}dt\)

Thay vào, ta có \(\int\frac{\sqrt{3}\cdot\frac{-\sqrt{3}sint}{cos^2t}}{\frac{\sqrt{3}}{cost}\sqrt{\frac{3}{cos^2t}-3}}dt=\int\frac{-3\cdot\frac{sint}{cos^2t}}{\frac{3}{cost}\cdot\sqrt{tan^2t}}dt=\int\frac{-sint}{cost\cdot tant}dt=-\int dt=-t+C\)

Bây giờ thay t vào là ra

25 tháng 12 2016

tính ra \(I=\frac{-\pi}{6}\) nhé