giúp mình ý b,e,g với ạ \(P=\frac{-3\sqrt{x}}{\sqrt{x}+3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=1+\sqrt{2}\)
b)\(\frac{x-4}{2\left(\sqrt{x}+2\right)}\) (ĐK:x\(\ge0\))
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{2\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}-2}{2}\)
c)\(\frac{x-5\sqrt{x}+6}{3\sqrt{x}-6}\) (ĐK:x\(\ge0;x\ne4\))
\(=\frac{x-3\sqrt{x}-2\sqrt{x}+6}{3\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)-2\left(\sqrt{x}-3\right)}{3\left(\sqrt{x}-2\right)}\)
\(=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{3\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}-3}{3}\)
b) Tử \(x-4=\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\) (hằng đăngt thức số 3 )
Ta có: \(A=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right).\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\) ( ĐK: \(x\ne0,\)\(x\ne9,\)\(x\ge3\))
\(\Leftrightarrow A=\frac{\sqrt{x}.\left(3-\sqrt{x}\right)+x+9}{\left(3+\sqrt{x}\right).\left(3-\sqrt{x}\right)}.\frac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}.\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow A=\frac{3\sqrt{x}-x+x+9}{\left(3+\sqrt{x}\right).\left(3-\sqrt{x}\right)}.\frac{2\sqrt{x}+4}{\sqrt{x}.\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow A=\frac{3\sqrt{x}-9}{\left(3+\sqrt{x}\right).\left(3-\sqrt{x}\right)}.\frac{2\sqrt{x}+4}{\sqrt{x}.\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow A=\frac{3\left(\sqrt{x}-3\right)}{\left(3+\sqrt{x}\right).\left(3-\sqrt{x}\right)}.\frac{2\sqrt{x}+4}{\sqrt{x}.\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow A=\frac{3.\left(2\sqrt{x}+4\right)}{\left(9-x\right).\sqrt{x}}\)
\(\Leftrightarrow A=\frac{6\sqrt{x}+12}{9\sqrt{x}-x}\)
ĐKXĐ: x \(\ge\)0; x khác 9 (1)
a) B = \(\frac{1}{3-\sqrt{x}}+\frac{\sqrt{x}}{3+\sqrt{x}}-\frac{x+9}{x-9}\)
B = \(\frac{-\left(\sqrt{x}+3\right)+\sqrt{x}\left(\sqrt{x}-3\right)-x-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
B = \(\frac{-\sqrt{x}-3+x-3\sqrt{x}-x-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
B = \(\frac{-4\sqrt{x}-12}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
B = \(\frac{4\left(\sqrt{x}+3\right)}{\left(3-\sqrt{x}\right)\left(\sqrt{x}+3\right)}\)
B = \(\frac{4}{3-\sqrt{x}}\)
b) B > A <=> \(\frac{4}{3-\sqrt{x}}>1\) <=> \(\frac{4}{3-\sqrt{x}}-1>0\)
<=> \(\frac{4-3+\sqrt{x}}{3-\sqrt{x}}>0\)
<=> \(\frac{\sqrt{x}+1}{3-\sqrt{x}}>0\)
Do \(\sqrt{x}+1>0\) => \(3-\sqrt{x}>0\) <=> \(\sqrt{x}< 3\)
<=> \(x< 9\)
Kết hợp với đk (1)
=> \(0\le x< 9\)
ĐKXĐ: x khác 1
\(M=\frac{x-\sqrt[3]{x}}{x-1}+\frac{1}{\sqrt[3]{x}-1}+\frac{1}{\sqrt[3]{x^2}+\sqrt[3]{x}+1}\)
\(=\frac{x-\sqrt[3]{x}}{x-1}+\frac{\sqrt[3]{x^2}+\sqrt[3]{x}+1+\sqrt[3]{x}-1}{\left(\sqrt[3]{x}-1\right)\left(\sqrt[3]{x^2}+\sqrt[3]{x}+1\right)}=\frac{x-\sqrt[3]{x}}{x-1}+\frac{\sqrt[3]{x^2}+2\sqrt[3]{x}}{\left(\sqrt[3]{x}\right)^3-1}\)
\(=\frac{x-\sqrt[3]{x}}{x-1}+\frac{\sqrt[3]{x^2}+2\sqrt[3]{x}}{x-1}=\frac{x+\sqrt[3]{x^2}+\sqrt[3]{x}}{x-1}=\frac{\sqrt[3]{x}\left(\sqrt[3]{x^2}+\sqrt[3]{x}+1\right)}{\left(\sqrt[3]{x}-1\right)\left(\sqrt[3]{x^2}+\sqrt[3]{x}+1\right)}\)
\(=\frac{\sqrt[3]{x}}{\sqrt[3]{x}-1}\)
bạn nhớ kiểm tra lại nhé
Vậy cái điều kiện \(x\ne\sqrt{3}\)người ta cho chi bạn. Bạn nên để ý là cái điều kiện người ta cho là nhằm cho cái đó nó xác định chớ không cho tào lao đâu. x # 0 cũng là vì lý do đó nên mình chắc cái đề trong sách in sai
Với điều kiện kèm theo thì mình chắc rằng cái đề phải là x - \(\sqrt{27}\) chứ không thể lad x - 27 được. Bạn xem lại đề nhé
ĐK: \(x\ge-7\)
PT \(\Leftrightarrow\left(\sqrt[3]{x-8}-\left(x-8\right)\right)+\left[\sqrt{x+7}-4\right]+\left(x-9\right)\left(x^2+x+2\right)=0\)
\(\Leftrightarrow\frac{-\left(x-9\right)\left(x-7\right)\left(x-8\right)}{\left(\sqrt[3]{x-8}\right)^2+\left(x-8\right)\sqrt[3]{x-8}+\left(x-8\right)^2}+\frac{x-9}{\sqrt{x+7}+4}+\left(x-9\right)\left(x^2+x+2\right)=0\)
\(\Leftrightarrow\left(x-9\right)\left[x^2+x+2+\frac{1}{\sqrt{x+7}+4}-\frac{\left(x-7\right)\left(x-8\right)}{\left(\sqrt[3]{x-8}\right)^2+\left(x-8\right)\sqrt[3]{x-8}+\left(x-8\right)^2}\right]=0\)
\(\Leftrightarrow x=9\)
P/s:em chả biết đánh giá cái ngoặc to thế nào nữa:((((
\(B=\frac{3\sqrt{x}+1}{x+2\sqrt{x}-3}-\frac{2}{\sqrt{x}+3}\) ĐK : \(x\ge0;x\ne1\)
\(=\frac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{2}{\sqrt{x}+3}\)
\(=\frac{3\sqrt{x}+1-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{1}{\sqrt{x}-1}\)
\(=\frac{3\sqrt{x}+1}{\left(\sqrt{x}+3\right)\cdot\left(\sqrt{x}-1\right)}-\frac{2}{\sqrt{x}+3}\)
\(=\frac{3\sqrt{x}+1-2\cdot\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\cdot\left(\sqrt{x}-1\right)}\)
\(=\frac{3\sqrt{x}+1-2\sqrt{x}+2}{\left(\sqrt{x}+3\right)\cdot\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}+3}{\left(\sqrt{x}+3\right)\cdot\left(\sqrt{x}-1\right)}\)
\(=\frac{1}{\sqrt{x}-1}\)
\(B=\frac{3\sqrt{x}+1}{x+2\sqrt{x}-3}-\frac{2}{\sqrt{x}+3}\)
\(=\frac{3\sqrt{x}+1-2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{3\sqrt{x}+1-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{1}{\sqrt{x}-1}\)
đặt \(x=\frac{\sqrt{3}}{cost};\forall t\in\left(0;\frac{\pi}{2}\right)\Rightarrow tant>0\)
\(dx=d\left(\frac{\sqrt{3}}{cost}\right)=\frac{-\sqrt{3}sint}{cos^2t}dt\)
Thay vào, ta có \(\int\frac{\sqrt{3}\cdot\frac{-\sqrt{3}sint}{cos^2t}}{\frac{\sqrt{3}}{cost}\sqrt{\frac{3}{cos^2t}-3}}dt=\int\frac{-3\cdot\frac{sint}{cos^2t}}{\frac{3}{cost}\cdot\sqrt{tan^2t}}dt=\int\frac{-sint}{cost\cdot tant}dt=-\int dt=-t+C\)
Bây giờ thay t vào là ra
b, bài này theo mình nghĩ chỉ có GTLN thôi, nếu có GTNN thì bày mình nhé :)) \(P=-\frac{3\sqrt{x}}{\sqrt{x}+3}=\frac{-3\left(\sqrt{x}+3\right)+9}{\sqrt{x}+3}=-3+\frac{9}{\sqrt{x}+3}\)
Ta có : \(\sqrt{x}+3\ge3\Rightarrow\frac{9}{\sqrt{x}+3}\le\frac{9}{3}=3\)
\(\Rightarrow P=-3+\frac{9}{\sqrt{x}+3}\le-3+3=0\)
Dấu ''='' xảy ra khi x = 0
Vậy GTLN của P bằng 0 tại x = 0
e, \(P>-1\Leftrightarrow P+1>0\Leftrightarrow\frac{-3\sqrt{x}}{\sqrt{x}+3}+1>0\)
\(\Leftrightarrow\frac{-3\sqrt{x}+\sqrt{x}+3}{\sqrt{x}+3}>0\Leftrightarrow\frac{3-2\sqrt{x}}{\sqrt{x}+3}>0\Leftrightarrow\frac{2\sqrt{x}-3}{\sqrt{x}+3}< 0\)
\(\Rightarrow2\sqrt{x}-3< 0\Leftrightarrow x< \frac{9}{4}\)
Kết hợp với đk : \(0< x< \frac{9}{4}\)
g, Xét \(P=-\frac{3\sqrt{x}}{\sqrt{x}+3}\) có \(\sqrt{x}\ge0\Rightarrow-3\sqrt{x}\le0\)mà \(\sqrt{x}+3>0\)
\(\Rightarrow P=-\frac{3\sqrt{x}}{\sqrt{x}+3}\le0\)
Xét \(1=\frac{\sqrt{x}+3}{\sqrt{x}+3}\)mà \(\sqrt{x}+3>0\)
Vậy P < 1