Cho m>n>0. CMR hàm số \(y=\left(\sqrt{m}-\sqrt{n}-\sqrt{m-n}\right)x+m-n\) luôn nghịch biến với mọi giá trị của x thuộc tập R
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để hàm số \(y=\left(\sqrt{2n+5}-2\right)x^2\) nghịch biến với mọi x<0 thì
\(\sqrt{2n+5}-2>0\)
\(\Leftrightarrow\sqrt{2n+5}>2\)
\(\Leftrightarrow2n+5>4\)
\(\Leftrightarrow2n>-1\)
\(\Leftrightarrow n>-\dfrac{1}{2}\)
Kết hợp ĐKXĐ, ta được: \(n>-\dfrac{1}{2}\)
Vậy: Để hàm số \(y=\left(\sqrt{2n+5}-2\right)x^2\) nghịch biến với mọi x<0 thì \(n>-\dfrac{1}{2}\)
b) Để hàm số \(y=\left(\sqrt{2n+5}-2\right)x^2\) đồng biến với mọi x<0 thì \(\sqrt{2n+5}-2< 0\)
\(\Leftrightarrow\sqrt{2n+5}< 2\)
\(\Leftrightarrow2n+5< 4\)
\(\Leftrightarrow2n< -1\)
\(\Leftrightarrow n< -\dfrac{1}{2}\)
Kết hợp ĐKXĐ, ta được: \(-\dfrac{5}{2}\le n< \dfrac{1}{2}\)
Vậy: Để hàm số \(y=\left(\sqrt{2n+5}-2\right)x^2\) đồng biến với mọi x<0 thì \(-\dfrac{5}{2}\le n< \dfrac{1}{2}\)
a,Nghịch biến khi `x<0`
`<=>\sqrt{2n+5}-2>0(x>=-5/2)`
`<=>\sqrt{2n+5}>2`
`<=>2n+5>4`
`<=>2n> -1`
`<=>n> -1/2`
Kết hợp ĐKXĐ:
`=>n>1/2`
b,Đồng biến với mọi `x<0`
`<=>\sqrt{2n+5}-2<0`
`<=>\sqrt{2n+5}<2`
`<=>2n+5<4`
`<=>2n< -1`
`<=>n< -1/2`
Kết hợp ĐKXĐ:
`=>-5/2<x< -1/2`
a. Vì \(a=\left(3-2\sqrt{2}\right)< 0\)
\(\Rightarrow\) Hàm số nghịch biến trên R
b. Thay \(x=3+2\sqrt{2}\)
\(\Rightarrow y=\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)+\sqrt{2}-1=\sqrt{2}\)
c. Thay \(y=0\Rightarrow0=\left(3-2\sqrt{2}\right)x+\sqrt{2}-1\)
\(\Leftrightarrow x=\frac{1-\sqrt{2}}{3-2\sqrt{2}}=-1-\sqrt{2}\)
2: m^2-m+1
=m^2-m+1/4+3/4
=(m-1/2)^2+3/4>=3/4>0 với mọi m
=>y=(m^2-m+1)x+m luôn là hàm số bậc nhất và luôn đồng biến trên R
\(m^2-\sqrt{3}m-\sqrt{2}m+\sqrt{6}=\left(m-\sqrt{3}\right)\left(m-\sqrt{2}\right)\)
Bảng xét dấu:
m | \(\sqrt{2}\) | \(\sqrt{3}\) | |||
\(m-\sqrt{3}\) | - | | | - | 0 | + |
\(m-\sqrt{2}\) | - | 0 | + | | | + |
\(\left(m-\sqrt{3}\right)\left(m-\sqrt{2}\right)\) | + | 0 | - | 0 | + |
Với \(m< \sqrt{2}\) và \(\sqrt{3}< m\) thì \(\left(m-\sqrt{3}\right)\left(m-\sqrt{2}\right)\) > 0 => Hàm số đồng biến
Với \(\sqrt{2}< x< \sqrt{3}\) thì \(\left(m-\sqrt{3}\right)\left(m-\sqrt{2}\right)\) < 0 => Hàm số nghịch biến
Để chứng minh hàm số \(y=\left(\sqrt{m}-\sqrt{n}-\sqrt{m-n}\right)x+m-n\) nghịch biến ta cần chứng minh \(\sqrt{m}-\sqrt{n}-\sqrt{m-n}< 0\).
Giả sử \(\sqrt{m}-\sqrt{n}-\sqrt{m-n}< 0\)
\(\Leftrightarrow\sqrt{m}-\sqrt{n}-\sqrt{m-n}< 0\)
\(\Leftrightarrow\sqrt{m}-\sqrt{n}< \sqrt{m-n}\) (*)
Vì \(m>n>0\) nên \(\sqrt{m}>\sqrt{n}\) ta bình phương hai vế của (*) ta có:
\(m+n-2\sqrt{m.n}< m-n\)
\(\Leftrightarrow2n-2\sqrt{mn}< 0\)
\(\Leftrightarrow2\sqrt{n}\left(\sqrt{n}-\sqrt{m}\right)< 0\)
\(\Leftrightarrow\sqrt{n}-\sqrt{m}< 0\)
\(\Leftrightarrow\sqrt{n}< \sqrt{m}\)
\(\Leftrightarrow n< m\) (luôn đúng).
Ta có điều phải chứng minh.