Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1a) m khác 5, khác -2
b) m khác 3, m < 3
B2a) vì căn 5 -2 luôn lớn hơn 0 nên hsố trên đồng biến
b) h số trên là nghịch biến vì 2x > căn 3x
c) bạn hãy đưa h số về dạng y=ax+b là y= 1/6x+1/3 mà 1/6 >0 => h số đồng biến
Để hàm số là hàm số bậc nhất thì hệ số \(a\ne0\)
a) Cm : \(\sqrt{3-m}\ne0\Rightarrow m\ne3\)
b) \(\frac{m-5}{m+2}\ne0\Rightarrow m\ne5\)
Bài 2 :
Để hàm số đồng biến thì hệ số \(a>0\)
Để hàm số nghịch biến thì hệ số \(a< 0\)
Gợi ý z tư làm nha
Các hàm số đồng biến trên R là: a); c); e); f)
Các hàm số còn lại nghịch biến trên R
Hàm số \(y=\left(|m-2|-4\right)x^2\) có dạng: \(y=ax^2\)
với \(a=|m-2|-4\)
\(a=|m-2|-4>0\Leftrightarrow|m-2|>4\)
\(\Rightarrow m>6\)hoặc \(m< -2\)
b,Hàm số \(y=\left(|m-2|-4\right)x^2\) nghịch biến trong khoảng \(\left(0;+\infty\right)\Leftrightarrow|m-2|-4< 0\)
\(|m-2|-4< 0\Leftrightarrow|m-2|< 4\)
\(\Rightarrow-2< m< 6\)
a) Để hàm số \(y=\left(\sqrt{2n+5}-2\right)x^2\) nghịch biến với mọi x<0 thì
\(\sqrt{2n+5}-2>0\)
\(\Leftrightarrow\sqrt{2n+5}>2\)
\(\Leftrightarrow2n+5>4\)
\(\Leftrightarrow2n>-1\)
\(\Leftrightarrow n>-\dfrac{1}{2}\)
Kết hợp ĐKXĐ, ta được: \(n>-\dfrac{1}{2}\)
Vậy: Để hàm số \(y=\left(\sqrt{2n+5}-2\right)x^2\) nghịch biến với mọi x<0 thì \(n>-\dfrac{1}{2}\)
b) Để hàm số \(y=\left(\sqrt{2n+5}-2\right)x^2\) đồng biến với mọi x<0 thì \(\sqrt{2n+5}-2< 0\)
\(\Leftrightarrow\sqrt{2n+5}< 2\)
\(\Leftrightarrow2n+5< 4\)
\(\Leftrightarrow2n< -1\)
\(\Leftrightarrow n< -\dfrac{1}{2}\)
Kết hợp ĐKXĐ, ta được: \(-\dfrac{5}{2}\le n< \dfrac{1}{2}\)
Vậy: Để hàm số \(y=\left(\sqrt{2n+5}-2\right)x^2\) đồng biến với mọi x<0 thì \(-\dfrac{5}{2}\le n< \dfrac{1}{2}\)
a,Nghịch biến khi `x<0`
`<=>\sqrt{2n+5}-2>0(x>=-5/2)`
`<=>\sqrt{2n+5}>2`
`<=>2n+5>4`
`<=>2n> -1`
`<=>n> -1/2`
Kết hợp ĐKXĐ:
`=>n>1/2`
b,Đồng biến với mọi `x<0`
`<=>\sqrt{2n+5}-2<0`
`<=>\sqrt{2n+5}<2`
`<=>2n+5<4`
`<=>2n< -1`
`<=>n< -1/2`
Kết hợp ĐKXĐ:
`=>-5/2<x< -1/2`