\(y=\left(3-2\sqrt{2}\right)x+\sqrt{2}-1\)

a) Hàm số đã cho đồng biến...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2019

a. Vì \(a=\left(3-2\sqrt{2}\right)< 0\)

\(\Rightarrow\) Hàm số nghịch biến trên R

b. Thay \(x=3+2\sqrt{2}\)

\(\Rightarrow y=\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)+\sqrt{2}-1=\sqrt{2}\)

c. Thay \(y=0\Rightarrow0=\left(3-2\sqrt{2}\right)x+\sqrt{2}-1\)

\(\Leftrightarrow x=\frac{1-\sqrt{2}}{3-2\sqrt{2}}=-1-\sqrt{2}\)

18 tháng 11 2016

B1a) m khác 5, khác -2

b) m khác 3, m < 3

B2a) vì căn 5 -2 luôn lớn hơn 0 nên hsố trên đồng biến

b) h số trên là nghịch biến vì 2x > căn 3x

c) bạn hãy đưa h số về dạng y=ax+b là y= 1/6x+1/3 mà 1/6 >0 => h số đồng biến

Để hàm số là hàm số bậc nhất thì hệ số \(a\ne0\)

a) Cm : \(\sqrt{3-m}\ne0\Rightarrow m\ne3\)

b) \(\frac{m-5}{m+2}\ne0\Rightarrow m\ne5\)

Bài 2 : 

Để hàm số đồng biến thì hệ số \(a>0\)

Để hàm số nghịch biến thì hệ số \(a< 0\)

Gợi ý z tư làm nha

22 tháng 4 2017

a) Hàm số nghịch biến trên R vì 1 - \(\sqrt{ }\)5 < 0.

b) Khi x = 1 + \(\sqrt{ }\)5 thì y = -5.

c) Khi y = \(\sqrt{ }\)5 thì x = \(\dfrac{-3+\sqrt{5}}{2}\)



22 tháng 4 2017

Bài giải:

a) Hàm số nghịch biến trên R vì 1 - √5 < 0.

b) Khi x = 1 + √5 thì y = -5.

c) Khi y = √5 thì x = -3+√523+52.

9 tháng 12 2020

a Để hàm số y đồng biến trên R 

thì k2+2/k-3 > 0  đk k khác 3 

mà k2+2>0 thì k-3 > 0 suy ra k>3

b Để hàm số Y đồng biến trên R

thì k+ căn 2/ k2+ căn 3 < 0 mà x2+ căn 3 >0 suy ra k< - căn 2

17 tháng 11 2019

bi dien

17 tháng 11 2019

Sao điên.

24 tháng 10 2021

a, Vì \(5-3\sqrt{2}>0\) nên hs đồng biến trên R

b, \(x=5+3\sqrt{2}\Leftrightarrow y=25-18+\sqrt{2}-1=6+\sqrt{2}\)

c, \(y=0\Leftrightarrow\left(5-3\sqrt{2}\right)x+\sqrt{2}-1=0\Leftrightarrow x=\dfrac{1-\sqrt{2}}{5-3\sqrt{2}}\)

\(\Leftrightarrow x=\dfrac{\left(1-\sqrt{2}\right)\left(5+3\sqrt{2}\right)}{7}=\dfrac{-2\sqrt{2}-1}{7}\)