cho tam giác MCD nhọn . vẽ CH vuông góc MD ( h thuộc MD ) , DK vuông góc tại MC ( k thuộc MC ) . CH cắt DK tại B . gọi A là trung điểm của CD . trên tia BA lấy điểm R sao cho AE = AB . chứng minh tam giác ABC = tam goc AED . chứng minh DE vuông góc MD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left\{{}\begin{matrix}AM=MD\\BM=MC\\\widehat{AMB}=\widehat{CMD}\end{matrix}\right.\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\\ \Rightarrow\widehat{ABM}=\widehat{DCM}\\ \text{Mà 2 góc này ở vị trí so le trong nên }AB\text{//}CD\\ b,AH\bot BC;DK\bot BC\Rightarrow AH\text{//}DK\\ \left\{{}\begin{matrix}AM=MD\\\widehat{AHM}=\widehat{DKM}=90^0\\\widehat{AMH}=\widehat{KMD}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta AHM=\Delta DKM\left(c.g.c\right)\\ \Rightarrow AH=DK\)
a: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra: AB//CD
a: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AB//CD
a) Xét tam giác AMB và tam giác DMC có:
BM = CM (gt)
AM =DM (gt)
\(\widehat{AMB}=\widehat{DMC}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)
b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)
Chúng lại ở vị trí so le trong nên AB //CD.
c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.
Suy ra MA = ME
Lại có MA = MD nên ME = MD.
d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.
Suy ra ED // BC
Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.
Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)
Câu a và câu b tham khảo tại link: Câu hỏi của Aftery - Toán lớp 7 - Học toán với OnlineMath
c) Xét \(\Delta\)ABE có AH vuông góc với AE và; HA = HE
=> AH là đường cao đồng thời là đường trung tuyến của \(\Delta\)ABE
=> \(\Delta\)ABE cân tại B
=> AB = BE
d) Ta có: SN vuông AH ; BC vuông AH
=> SN //BC
=> NK //MC
=> ^KNI = ^MCI
mặt khác có: NK = MC ; IN = IC ( gt)
=> \(\Delta\)NIK = \(\Delta\)CIM
=> ^NIK = ^CIM mà ^NIK + ^KIC = 180o
=> ^CIM + ^KIC = 180o
=> ^KIM = 180o
=>M; I ; K thẳng hàng
1 Xét 2 tam giác MAB và tam giác MDC:
Ta thấy:
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
BM=MC (gt)
MA=MD (gt)
Từ các giả thiết trên, suy ra:
\(\Delta MAB=\Delta MDC\left(c-g-c\right)\)
a: Xét ΔMAB và ΔMDC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔMAB=ΔMDC