K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

Ta có AA′⊥ AB′ vì chúng là hai tia phân giác của hai góc kề bù. Tương tự AA′⊥ AC′. Vì qua A chỉ có một đường vuông góc với AA' nên ba điểm B', A, C' thẳng hàng và AA′⊥ B′C′, hay A'A là một đường cao của tam giác A'B'C'. Hoàn toàn tương tự ta chứng minh được BB' và CC' là hai đường cao của tam giác A'B'C'.

Mặt khác theo cách chứng minh của bài 9.5 ta có AA', BB', CC' là ba tia phân giác của các góc A, B, C của tam giác ABC. Từ đó suy ra giao điểm của ba đường phân giác của tam giác ABC là trực tâm của tam giác A'B'C'.

25 tháng 5 2019

A B C E D 1 2 2 1 1 2 z x y

a, Do DE//BC

=> \(\widehat{A_1}=\widehat{ABC}\)( so le trong )

   Vì \(\widehat{BAz}\)là góc ngoài tam giác ABC

=> \(\widehat{BAz}=\widehat{ABC}+\widehat{ACB}\)

 \(\Rightarrow\widehat{A_1}+\widehat{A_2}=\widehat{ABC}+\widehat{ACB}\)

Do  \(\widehat{A_1}=\widehat{ABC}\)( chứng minh trên )

 \(\Rightarrow\widehat{A_2}=\widehat{ACB}\)

  Mà góc ABC = góc ACB ( tam giác ABC cân ở A )

=> \(\widehat{A_1}=\widehat{A_2}\)

 => Ax là tia phân giác góc BAz

Hay Ax là phân giác góc ngoài đỉnh A của tam giác ABC

b, Vì \(\widehat{A_2}=\widehat{CAE}\)( 2 góc đối đỉnh)

Mà \(\widehat{A_2}=\widehat{A_1}\)(cmt)

 \(\Rightarrow\widehat{A_1}=\widehat{CAE}\)

\(\Rightarrow\widehat{A_1}+\widehat{BAC}=\widehat{CAE}+\widehat{BAC}\)

\(\Rightarrow\widehat{DAC}=\widehat{EAB}\)

      Vì góc ABC = góc ACB ( tam giác ABC cân )

=> \(\frac{1}{2}\widehat{ABC}=\frac{1}{2}\widehat{ACB}\Rightarrow\widehat{ABE}=\widehat{ACD}\)

                Xét tam giác DAC và tam giác EAB có:

                                   \(\widehat{ACD}=\widehat{ABE}\)( chứng minh trên )

                                       AC = AB  ( tam giác ABC cân )

                                  \(\widehat{DAC}=\widehat{EAB}\)( chứng minh trên )

=> \(\Delta DAC=\Delta EAB\)( g-c-g )

=> DA = EA

undefined

Tham khảo:

 

Bài 6 (các câu khác nhau thì không liên quan đến nhau)a) Cho tam giác ABC, kẻ BH  AC ( H  AC); CK  AB ( K  AB). Biết BH = CK.Chứng minh tam giác ABC cân.Tết đến tưng bừng, vui mừng làm ToánGiáo viên: Nguyễn Cao Uyển Mib) Cho Tam giác ABC, gọi M, N lần lượt là trung điểm các cạnh AB, AC. Biết CM =BN. Chứng tỏ tam giác ABC cân.c) Cho tam giác ABC cân tại A, Tia phân giác của góc B và góc C cắt AC và AB...
Đọc tiếp

Bài 6 (các câu khác nhau thì không liên quan đến nhau)
a) Cho tam giác ABC, kẻ BH  AC ( H  AC); CK  AB ( K  AB). Biết BH = CK.
Chứng minh tam giác ABC cân.
Tết đến tưng bừng, vui mừng làm Toán
Giáo viên: Nguyễn Cao Uyển Mi
b) Cho Tam giác ABC, gọi M, N lần lượt là trung điểm các cạnh AB, AC. Biết CM =
BN. Chứng tỏ tam giác ABC cân.
c) Cho tam giác ABC cân tại A, Tia phân giác của góc B và góc C cắt AC và AB lần
lượt tại D và E. Chứng minh BD = CE.
Bài 7: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia
CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD tại H, CK vuông góc với AE
tại K. Hai đường thẳng HB và KC cắt nhau tại I. Chứng minh rằng:
a) Tam giác ADE cân.
b) Tam giác BIC cân.
c) IA là tia phân giác của góc BIC.
Bài 8: Cho tam giác ABC vuông tại A, có AB = 5cm, BC = 13cm. Kẻ AH vuông góc với
BC tại H. Tính độ dài các đoạn thẳng: AC, AH, BH, CH.
Bài 9: (các câu khác nhau thì không liên quan đến nhau)
a) Cho tam giác ABC vuông tại A, đường cao AH = 2cm. Tính các cạnh của tam giác
ABC biết: BH = 1cm, HC = 3cm.
b) Cho tam giác ABC đều có AB = 5cm. Tính độ dài đường cao BH?
Bài 10: Cho tam giác ABC có góc A nhỏ hơn 900. Vẽ ra phía ngoài tam giác ABC các
tam giác vuông cân đỉnh A là MAB, NAC.
a) Chứng minh: MC = NB.
b) Chứng minh: MC NB 
c) Giả sử tam giác ABC đều cạnh 4 cm. Tính MB, NC và chứng minh MN // BC.

Giúp mình với ạ, mik đang cần gấp

1
6 tháng 2 2022

Ai giúp mik với mik đang cần gấp ạ

19 tháng 4 2018

sorry , I don't no

Em lớp 6 , chịu thôi

KB ko chị