Tìm giá trị nguyên của x để
a) ( 2x^5 + 4x^4 - 7x^3 - 44 ) chia hết cho 2x^2 - 7
b) ( 2x^2 + 3x + 3 ) chia hết cho 2x - 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(2x^5+4x^4-7x^3-44⋮2x^2-7\)
\(\Leftrightarrow5⋮2x^2-7\)
\(\Leftrightarrow2x^2-7\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
Ta có bảng sau :
\(2x^2-7\) | 1 | -1 | 5 | -5 |
x | \(\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\) | \(\left[{}\begin{matrix}x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\) | \(\left[{}\begin{matrix}x=\sqrt{6}\\x=-\sqrt{6}\end{matrix}\right.\) | \(\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\) |
Vì x là số nguyên \(\Rightarrow x\in\left\{2;-2;1;-1\right\}\)
Vậy \(x\in\left\{2;-2;1;-1\right\}\) thì \(2x^5+4x^4-7x^3-44⋮2x^2-7\)
a) f(x) = 10x² - 7x - 5 = 10x² - 15x + 8x - 12 + 7 = 5x(2x-3) + 4(2x-3) + 7
f(x) chia hết cho 2x-3 khi và chỉ khi 7 chia hết cho 2x-3, vì 7 là số nguyên tố, nên chi có các trường hợp:
TH1: 2x-3 = -1 <=> x = 1
TH2: 2x-3 = 1 <=> x = 2
TH3: 2x-3 = -7 <=> x = -2
TH4: 2x-3 = 7 <=> x = 5
Vây có 4 giá trị nguyên của x là {-2, 1, 2, 5}
a) f(x) = 10x² - 7x - 5 = 10x² - 15x + 8x - 12 + 7 = 5x(2x-3) + 4(2x-3) + 7
f(x) chia hết cho 2x-3 khi và chỉ khi 7 chia hết cho 2x-3, vì 7 là số nguyên tố, nên chi có các trường hợp:
TH1: 2x-3 = -1 <=> x = 1
TH2: 2x-3 = 1 <=> x = 2
TH3: 2x-3 = -7 <=> x = -2
TH4: 2x-3 = 7 <=> x = 5
Vây có 4 giá trị nguyên của x là {-2, 1, 2, 5}
b) g(x) = x³ - 4x² + 5x - 1 = x³ - 3x² - x² + 3x + 2x - 6 + 5 = x²(x-3) - x(x-3) + 2(x-3) + 5
g(x) chia hết cho x-3 khi và chỉ khi 5 chia hết cho x-3 (5 là số nguyên tố nên chỉ xét các trường hợp)
TH1: x-3 = -5 <=> x = -2
TH2: x-3 = -1 <=> x = 2
TH3: x-3 = 1 <=> x = 4
TH4: x-3 = 5 <=> x = 8
Vậy có giá trị nguyên của x thỏa là {-1, 2, 4, 8}
a: \(\Leftrightarrow3x^3-2x^2+15x^2-10x+3x-2+7⋮3x-2\)
\(\Leftrightarrow3x-2\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{3;1\right\}\)
b: \(\Leftrightarrow2x^5-7x^3+4x^4-14x^2+14x^2-49x+49x-44⋮2x^2-7\)
\(\Leftrightarrow2401x^2-1936⋮2x^2-7\)
\(\Leftrightarrow4802x^2-3872⋮2x^2-7\)
\(\Leftrightarrow2x^2-7\inƯ\left(12935\right)\)
\(\Leftrightarrow2x^2-7\in\left\{1;5;13;65;199;995;2587;12935;-1;-5\right\}\)
\(\Leftrightarrow2x^2\in\left\{8;72;2\right\}\)
hay \(x\in\left\{2;-2;6;-6;1;-1\right\}\)
a) Ta thực hiện phép chia \(3x^3+13x^2-7x+5\) cho \(3x-2\). Khi đó ta có:
\(A=\frac{3x^3+13x^2-7x+5}{3x-2}=3x^2+5x+1+\frac{7}{3x-2}\)
Nếu x nguyên thì \(3x^2+5x+1\in\text{Z}\) nên để A nguyên thì \(\frac{7}{3x-2}\in Z\)
\(\Rightarrow3x-2\in\left\{-7;-1;1;7\right\}\)
\(\Rightarrow x\in\left\{1;3\right\}\)
b) Ta có: \(B=\frac{2x^5+4x^4-7x^3-44}{2x^2-7}=\left(x^3+2x^2+7\right)+\frac{5}{2x^2-7}\)
Để B nguyên thì \(\frac{5}{2x^2-7}\in Z\Rightarrow2x^2-7\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow x\in\left\{-1;1;2;-2\right\}\)
b: \(\Leftrightarrow2n^2+n-2n-1+3⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{0;-1;1;-2\right\}\)
a: \(2x^5+4x^4-7x^3-44⋮2x^2-7\)
\(\Leftrightarrow2x^5-7x^3+4x^4-14x^2+14x^2-49+5⋮2x^2-7\)
\(\Leftrightarrow2x^2-7\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{2;-2;1;-1\right\}\)
b: \(2x^2+3x+3⋮2x-1\)
\(\Leftrightarrow2x^2-x+4x-2+5⋮2x-1\)
\(\Leftrightarrow2x-1\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{1;0;3;-2\right\}\)