Chứng minh rằng nếu 0 < a < 1 thì \(\sqrt{a}< a\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xin lỗi chủ tus dù ko liên quan đến bài học cho mik hỏi môn văn của mik nghi CHT (chưa hoàn thành) mà vẫn hs tiên tiến ạ ?
Áp dụng BĐT cô-si, ta được:
\(\hept{\begin{cases}\frac{a}{\sqrt{b}}+\sqrt{b}\ge2\sqrt{a}\\\frac{b}{\sqrt{a}}+\sqrt{a}\ge2\sqrt{b}\end{cases}}\)
=> \(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}+\sqrt{a}+\sqrt{b}\ge2\left(\sqrt{a}+\sqrt{b}\right)\)
=> \(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}\ge\sqrt{a}+\sqrt{b}\) (đpcm)
Vậy....
Biến đổi tương đương ta được :
\(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}\ge\sqrt{a}+\sqrt{b}\)
\(\Leftrightarrow\sqrt{a}+\sqrt{b}\le\frac{\sqrt{a}^3+\sqrt{b}^3}{\sqrt{ab}}\)
\(\Leftrightarrow\sqrt{a}+\sqrt{b}\le\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\sqrt{ab}}\)
\(\Leftrightarrow\sqrt{ab}\le a-\sqrt{ab}+b\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)( đúng với đk )
\(0< a< 1\Rightarrow\hept{\begin{cases}a>0\\a-1< 0\end{cases}\Rightarrow}a\left(a-1\right)< 0\Rightarrow a^2-a< 0\Rightarrow a^2< a\Rightarrow a< \sqrt{a}\)
Vậy nếu 0 < x < 1 thì \(\sqrt{a}>a\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow ab+bc+ca=0\Rightarrow\left(a+c\right)\left(b+c\right)=c^2\)
Vì \(a,b>0\)mà \(\frac{1}{c}=-\left(\frac{1}{a}+\frac{1}{b}\right)< 0\)nên \(c< 0\Rightarrow\sqrt{\left(a+c\right)\left(b+c\right)}=-c\)
\(\Rightarrow2c+2\sqrt{\left(a+c\right)\left(b+c\right)}=0\Rightarrow\left(a+c\right)+2\sqrt{\left(a+c\right)\left(b+c\right)}+\left(b+c\right)=a+b\)
\(\Rightarrow\left(\sqrt{a+c}+\sqrt{b+c}\right)^2=a+b\)---> 2 vế đều dương nên ta lấy căn 2 vế:
\(\sqrt{a+c}+\sqrt{b+c}=\sqrt{a+b}\)
ta có :\(\sqrt{a^2+b^2}>\sqrt[3]{a^3+b^3}\)
\(\Leftrightarrow\left(a^2+b^2\right)\left(\sqrt{a^2+b^2}\right)>\left(\sqrt[3]{a^3+b^3}\right)^3\)
\(\Leftrightarrow\left(a^2+b^2\right)\left(\sqrt{a^2+b^2}\right)>a^3+b^3\)
\(\Leftrightarrow\left(a^2+b^2\right)^2.\left(\sqrt{a^2+b^2}\right)^2>\left(a^3+b^3\right)^2\)
\(\Leftrightarrow\left(a^4+2a^2b^2+b^4\right)\left(a^2+b^2\right)>\)\(a^6+2a^3b^3+b^6\)
( sau đó nhân phá ngoặc và rút gọn)
\(\Leftrightarrow3a^2b^4+3a^4b^2-2a^3b^3>0\)
\(\Leftrightarrow a^2b^2.\left(3a^2+3b^2-2ab\right)>0\)
\(\Leftrightarrow a^2b^2.\left(a^2-2ab+b^2+2.\left(a^2+b^2\right)\right)>0\)
\(\Leftrightarrow a^2b^2.\left(\left(a-b\right)^2+2\left(a^2+b^2\right)\right)>0\)(luôn đúng) => đpcm
Đề bài sai . Phải là 0 < a < 1 . Chứng minh rằng \(\sqrt{a}\) > a chứ !