giúp mình với, mình cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
8 It took me 3 hours to do these exercise
9 Many years ago, my village used to be very poor
10 Mary last met him 5 years ago
11 Would you mind giving me a hand
12 There used to be many old buildings in this city
13 When were they married
14 I started learning Japanese 2 years ago
15 Jack used to be a good student
16 My sister used to buy all her clothes in Henry's
17 Braille is reading system for the blind
Trả lời:
Phân số: \(\frac{232323}{191919}\)\(=\frac{23}{19}\)
vì cùng rút gọn cho phân số: \(\frac{10101}{10101}\)
~Học tốt!~
Từ thế kỉ XVII, tiếng việt trở nên phong phú và trong sáng. Một số giáo sĩ Phương Tây, trong đó có giáo sĩ người Pháp A-Lếc-Xăng-Đơ-Rốt đã dùng chữ cái La Tinh ghi âm tiếng việt để biên soạn và giảng giáo lý Thiên Chúa. Từ đó, chữ quốc ngữ ra đời.
Để căn thức có nghĩa\(\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{2}{x+1}\ge0\\x+1\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x+1\le0\\x+1\ne0\end{matrix}\right.\)\(\Leftrightarrow x+1< 0\Leftrightarrow x< -1\)
Vậy...
3/2017 = 2016/x
=> 3.x=2017.2016
=> 3.x=4066272
=> x = 4066272 : 3
=> x = 1355424
- Có 2 cách để mô tả thuật toán :
+ liệt kê bằng ngôn ngữ tự nhiên
+ sử dụng sơ đồ khối
Bài 35:
b) ĐKXĐ: \(x\notin\left\{5;2\right\}\)
Ta có: \(\dfrac{x+2}{x-5}+3=\dfrac{6}{2-x}\)
\(\Leftrightarrow\dfrac{x+2}{x-5}+3-\dfrac{6}{2-x}=0\)
\(\Leftrightarrow\dfrac{x+2}{x-5}+3+\dfrac{6}{x-2}=0\)
\(\Leftrightarrow\dfrac{\left(x+2\right)\left(x-2\right)}{\left(x-5\right)\left(x-2\right)}+\dfrac{3\left(x-5\right)\left(x-2\right)}{\left(x-5\right)\left(x-2\right)}+\dfrac{6\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}=0\)
Suy ra: \(x^2-4+3\left(x^2-7x+10\right)+6x-30=0\)
\(\Leftrightarrow x^2-4+3x^2-21x+30+6x-30=0\)
\(\Leftrightarrow4x^2-15x-4=0\)
\(\Leftrightarrow4x^2-16x+x-4=0\)
\(\Leftrightarrow4x\left(x-4\right)+\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\4x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\4x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\left(nhận\right)\\x=-\dfrac{1}{4}\left(nhận\right)\end{matrix}\right.\)
Vậy: \(S=\left\{4;-\dfrac{1}{4}\right\}\)
Bài 36:
a) Ta có: \(\left(3x^2-5x+1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(3x^2-5x+1\right)=0\)
mà \(3x^2-5x+1>0\forall x\)
nên (x-2)(x+2)=0
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy: S={2;-2}
Trả lời:
\(a,\sqrt{\left(11-6\sqrt{2}\right)^2}+\sqrt{\left(11+6\sqrt{2}\right)^2}\)
\(=\left|11-6\sqrt{2}\right|+\left|11+6\sqrt{2}\right|\)
\(=11-6\sqrt{2}+11+6\sqrt{2}\)
\(=22\)
b, \(\sqrt{\left(10-4\sqrt{6}\right)^2}-\sqrt{\left(10+4\sqrt{6}\right)^2}\)
\(=\left|10-4\sqrt{6}\right|-\left|10+4\sqrt{6}\right|\)
\(=10-4\sqrt{6}-\left(10+4\sqrt{6}\right)\)
\(=10-4\sqrt{6}-10-4\sqrt{6}\)
\(=-8\sqrt{6}\)
c, \(\sqrt{\left(4-\sqrt{5}\right)^2}+\sqrt{\left(1-\sqrt{5}\right)^2}\)
\(=\left|4-\sqrt{5}\right|+\left|1-\sqrt{5}\right|\)
\(=4-\sqrt{5}+\sqrt{5}-1\)
\(=3\)
d, \(\sqrt{\left(7+\sqrt{2}\right)^2}-\sqrt{\left(1-\sqrt{2}\right)^2}\)
\(=\left|7+\sqrt{2}\right|-\left|1-\sqrt{2}\right|\)
\(=7+\sqrt{2}-\left(\sqrt{2}-1\right)\)
\(=7+\sqrt{2}-\sqrt{2}+1\)
\(=8\)
Trả lời:
Bài 2:
a, \(5\sqrt{25a^2}-25a\) với \(a\le0\)
\(=5\sqrt{\left(5a\right)^2}-25a\)
\(=5.\left|5a\right|-25a\)
\(=5.\left(-5a\right)-25a\) (vì \(a\le0\))
\(=-25a-25a=-50a\)
b, \(\sqrt{49a^2}+3a\) với \(a\ge0\)
\(=\sqrt{\left(7a\right)^2}+3a\)
\(=\left|7a\right|+3a\)
\(=7a+3a\) (vì \(a\ge0\))
\(=10a\)
c, \(\sqrt{16a^4}+6a^2\)
\(=\sqrt{\left(4a^2\right)^2}+6a^2\)
\(=\left|4a^2\right|+6a^2\)
\(=4a^2+6a^2=10a^2\)
d, \(3\sqrt{9a^6}-6a^3\) với \(a\le0\)
\(=3\sqrt{\left(3a^3\right)^2}-6a^3\)
\(=3.\left|3a^3\right|-6a^3\)
\(=3.\left(-3a^3\right)-6a^3\) (vì \(a\le0\))
\(=-9a^3-6a^3=-15a^3\)