Tìm x ϵ N
a. 2n + 1 ⋮ n - 3
b. n2 + 3n - 13 ⋮ n + 3
c. n2 + 3 ⋮ n - 1
Help me...e...e...e !!!
Thank you very much!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(3n+2⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{2;0;6;-4\right\}\)
9: \(\Leftrightarrow n^2+n+3n+2+1⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1\right\}\)
hay \(n\in\left\{0;-2\right\}\)
10: \(\Leftrightarrow n^2+4n+4-2⋮n+2\)
\(\Leftrightarrow n+2\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{-1;-3;0;-4\right\}\)
11: \(\Leftrightarrow n^2-2n+1+2⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{2;0;3;-1\right\}\)
a/ Bạn coi lại đề bài, 3n^2 +n^2 thì bằng 4n^2 luôn chứ ko ai cho đề bài như vậy cả
b/ \(\lim\limits\dfrac{\dfrac{n^3}{n^3}+\dfrac{3n}{n^3}+\dfrac{1}{n^3}}{-\dfrac{n^3}{n^3}+\dfrac{2n}{n^3}}=-1\)
c/ \(=\lim\limits\dfrac{-\dfrac{2n^3}{n^2}+\dfrac{3n}{n^2}+\dfrac{1}{n^2}}{-\dfrac{n^2}{n^2}+\dfrac{n}{n^2}}=\lim\limits\dfrac{-2n}{-1}=+\infty\)
d/ \(=\lim\limits\left[n\left(1+1\right)\right]=+\infty\)
e/ \(\lim\limits\left[2^n\left(\dfrac{2n}{2^n}-3+\dfrac{1}{2^n}\right)\right]=\lim\limits\left(-3.2^n\right)=-\infty\)
f/ \(=\lim\limits\dfrac{4n^2-n-4n^2}{\sqrt{4n^2-n}+2n}=\lim\limits\dfrac{-\dfrac{n}{n}}{\sqrt{\dfrac{4n^2}{n^2}-\dfrac{n}{n^2}}+\dfrac{2n}{n}}=-\dfrac{1}{2+2}=-\dfrac{1}{4}\)
g/ \(=\lim\limits\dfrac{n^2+3n-1-n^2}{\sqrt{n^2+3n-1}+n}+\lim\limits\dfrac{n^3-n^3+n}{\sqrt[3]{\left(n^3-n\right)^2}+n.\sqrt[3]{n^3-n}+n^2}\)
\(=\lim\limits\dfrac{\dfrac{3n}{n}-\dfrac{1}{n}}{\sqrt{\dfrac{n^2}{n^2}+\dfrac{3n}{n^2}-\dfrac{1}{n^2}}+\dfrac{n}{n}}+\lim\limits\dfrac{\dfrac{n}{n^2}}{\dfrac{\sqrt[3]{\left(n^3-n\right)^2}}{n^2}+\dfrac{n\sqrt[3]{n^3-n}}{n^2}+\dfrac{n^2}{n^2}}\)
\(=\dfrac{3}{2}+0=\dfrac{3}{2}\)
a: A=3n^2-n-3n^2+6n=5n chia hết cho 5
b: B=n^2+5n-n^2+n+6=6n+6=6(n+1) chia hết cho 6
c: =n^3+2n^2+3n^2+6n-n-2-n^3+2
=5n^2+5n
=5(n^2+n) chia hết cho 5
a, Ư(7) = { -7; -1; 1; 7}
Lập bảng ta có:
a +2 | -7 | -1 | 1 | 7 |
a | -9 | -3 | -1 | 5 |
Theo bảng trên ta có:
\(a\) \(\in\) { -9; -3; -1; 5}
b, 2a + 1 \(\in\) Ư(12)
Ư(12) = { -12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12}
lập bảng ta có:
2a+1 | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
a
|
-11/2 loại |
-7/2 loại |
-5/2 loại |
-2 nhận |
-3/2 loại |
-1 nhận |
0 nhận |
1/2 loại |
1 nhận |
3/2 loại |
5/2 loại |
11/2 loại |
Theo bảng trên ta có các giá trị nguyên của a thỏa mãn đề bài là:
a \(\in\) {- 2; - 1; 0; 1}
n + 5 \(⋮\) n - 2
n - 2 + 7 ⋮ n - 2
7 ⋮ n -2
Ư(7) ={ -7; -1; 1; 7}
Lập bảng ta có:
n - 2 | -7 | -1 | 1 | 7 |
n | -5 | 1 | 3 | 9 |
Theo bảng trên ta có:
n \(\in\) { -5; 1; 3; 9}
a) Ta có:
\(2n+1⋮n-3\)
\(\Rightarrow\left(2n-6\right)+7⋮n-3\)
\(\Rightarrow2\left(n-3\right)+7⋮n-3\)
\(\Rightarrow7⋮n-3\)
\(\Rightarrow n-3\in\left\{1;7\right\}\) ( Vì \(n\in N\) )
\(\Rightarrow\left\{{}\begin{matrix}n-3=1\Rightarrow n=4\\n-3=7\Rightarrow n=10\end{matrix}\right.\)
Vậy n=4 hoặc n=10
b) Ta có:
\(n^2+3n-13⋮n+3\)
\(\Rightarrow n\left(n+3\right)-13⋮n+3\)
\(\Rightarrow-13⋮n+3\)
\(\Rightarrow n+3\in\left\{1;13\right\}\) ( Vì \(n\in N\) )
\(\Rightarrow\left\{{}\begin{matrix}n+3=1\Rightarrow n=-2\left(loai\right)\\n+3=13\Rightarrow n=10\end{matrix}\right.\)
Vậy n=10
c) Ta có:
\(n^2+3⋮n-1\)
\(\Rightarrow n^2-1+4⋮n-1\)
\(\Rightarrow\left(n-1\right)\left(n+1\right)+4⋮n-1\)
\(\Rightarrow n+1+4⋮n-1\)
\(\Rightarrow n+5⋮n-1\)
\(\Rightarrow\left(n-1\right)+6⋮n-1\)
\(\Rightarrow6⋮n-1\)
\(\Rightarrow n-1\in\left\{1;2;3;6\right\}\) ( Vì \(n\in N\) )
\(\Rightarrow\left\{{}\begin{matrix}n-1=1\Rightarrow n=2\\n-1=2\Rightarrow n=3\\n-1=3\Rightarrow n=4\\n-1=6\Rightarrow n=7\end{matrix}\right.\)
Vậy n=2 hoặc n=3 hoặc n=4 hoặc n=7
a,\(2n+1=2n-6+7=2\left(n-3\right)+7\)
Do \(2\left(n-3\right)⋮n-3\)
\(\Rightarrow n-3\in\left\{\pm1;\pm7\right\}\)
\(\Leftrightarrow\left[{}\begin{matrix}n-3=1\\n-3=-1\\n-3=7\\n-3=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=4\\n=2\\n=10\\n=-4\end{matrix}\right.\)