(\(\dfrac{1}{16}\) )\(^{100}\) và (\(\dfrac{-1}{2}\))\(^{500}\)
so sánh 2 số hữu tỉ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)mik ko biết trục số ở đâu nên tham khảo:
2
-0,75 <5/3
a: -3/100=-9/300; -2/3=-200/300
=>-3/100>-2/3
b: -3/5=-9/15
-2/3=-10/15
=>-3/5>-2/3
c: -5/4<-1<-3/8
d: -2/3=-8/12; -3/4=-9/12
=>-2/3>-3/4
e: -267/268>-1
-1>-1347/1343
=>-267/268>-1347/1343
\(a,\dfrac{a}{b}>1\Leftrightarrow a>1\cdot b=b\\ \dfrac{a}{b}< 1\Leftrightarrow a< 1\cdot b=b\\ b,\dfrac{a}{b}=\dfrac{a\left(b+1\right)}{b\left(b+1\right)}=\dfrac{ab+a}{b^2+b}\\ \dfrac{a+1}{b+1}=\dfrac{b\left(a+1\right)}{b\left(b+1\right)}=\dfrac{ab+b}{b^2+b}\\ \forall a=b\Leftrightarrow\dfrac{a}{b}=\dfrac{a+1}{b+1}\\ \forall a>b\Leftrightarrow\dfrac{a}{b}>\dfrac{a+1}{b+1}\\ \forall a< b\Leftrightarrow\dfrac{a}{b}< \dfrac{a+1}{b+1}\)
\(c,\forall a>b\Leftrightarrow\dfrac{a}{b}-1=\dfrac{a-b}{b}>\dfrac{a-b}{b+n}\left(b< b+n;a-b>0\right)=\dfrac{a+n}{b+n}-1\\ \Leftrightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\\ \forall a< b\Leftrightarrow1-\dfrac{a}{b}=\dfrac{b-a}{b}>\dfrac{b-a}{b+n}\left(b< b+n;b-a>0\right)=1-\dfrac{a+n}{b+n}\\ \Leftrightarrow1-\dfrac{a}{b}>1-\dfrac{a+n}{b+n}\Leftrightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\\ \forall a=b\Leftrightarrow\dfrac{a+n}{b+n}=\dfrac{a}{b}\left(=1\right)\)
Câu 1 :
\(\dfrac{-25}{37}\&\dfrac{-20}{31}\)
Ta thấy \(\dfrac{-25}{37}< \dfrac{-20}{37}\)
mà \(\dfrac{-20}{37}< \dfrac{-20}{31}\)
\(\Rightarrow\dfrac{-25}{37}< \dfrac{-20}{31}\)
Câu 2 :
\(\dfrac{2}{3}\&\dfrac{5}{7}\)
\(\dfrac{2}{3}:\dfrac{5}{7}=\dfrac{2}{3}.\dfrac{7}{5}=\dfrac{14}{15}< 1\)
\(\Rightarrow\dfrac{5}{7}>\dfrac{2}{3}\) Câu 3 : \(\dfrac{8}{13}\&\dfrac{5}{7}\)Ta thấy \(\dfrac{8}{13}:\dfrac{5}{7}=\dfrac{8}{13}.\dfrac{7}{5}=\dfrac{56}{65}< 1\)
\(\Rightarrow\dfrac{8}{13}< \dfrac{5}{7}\)tỉ số của a / b là (92 - 1/9 - 2/ 10 - 3/11 - ... - 92/100) trên 1/45 + 1/50 + ... + 1/500 :)) hay ngắn tắc hơn là A/B cho nhanh :)))))))))))))))
\(A=\left(1+1+...+1\right)-\left(\dfrac{1}{9}+\dfrac{2}{10}+...+\dfrac{92}{100}\right)\)𝓒𝓸́ 92 𝓼𝓸̂́ 1
\(A=\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{2}{10}\right)+...+\left(1-\dfrac{92}{100}\right)\)
\(A=\dfrac{8}{9}+\dfrac{8}{10}+...+\dfrac{8}{100}\)
\(A=8.\left(\dfrac{1}{9}+\dfrac{1}{10}+...+\dfrac{1}{100}\right)\)
\(B=\dfrac{1}{45}+\dfrac{1}{50}+...+\dfrac{1}{500}\)
\(B=\dfrac{1}{5}.\left(\dfrac{1}{9}+\dfrac{1}{10}+...+\dfrac{1}{100}\right)\)
\(\Rightarrow\dfrac{A}{B}=\dfrac{8.\left(\dfrac{1}{9}+\dfrac{1}{10}+...+\dfrac{1}{100}\right)}{\dfrac{1}{5}.\left(\dfrac{1}{9}+\dfrac{1}{10}+...+\dfrac{1}{100}\right)}\\ \Rightarrow\dfrac{A}{B}=\dfrac{8}{\dfrac{1}{5}}=40\)
𝓥𝓪̣̂𝔂 𝓽𝓲̉ 𝓼𝓸̂́ 𝓬𝓾̉𝓪 𝓐 𝓿𝓪̀ 𝓑 𝓵𝓪̀ 40
\(\dfrac{-11}{3^7\cdot7^3}=\dfrac{1}{3^7\cdot7^3}\cdot\left(-11\right)\)
\(\dfrac{-78}{3^7\cdot7^4}=\dfrac{-78}{3^7\cdot7^3\cdot7}=\dfrac{1}{3^7\cdot7^3}\cdot\dfrac{-78}{7}\)
mà \(-11>-\dfrac{78}{7}\)
nên \(\dfrac{-11}{3^7\cdot7^3}>\dfrac{-78}{3^7\cdot7^4}\)
a: \(\dfrac{-13}{40}< \dfrac{-12}{40}\)
\(\dfrac{-5}{6}>\dfrac{-91}{104}\)
\(\dfrac{1}{2^{500}}=\dfrac{1}{\left(2^5\right)^{100}}=\dfrac{1}{32^{100}}\\ \dfrac{1}{5^{200}}=\dfrac{1}{\left(5^2\right)^{100}}=\dfrac{1}{25^{100}}\)
mà `32^(100)>25^(100)`
nên \(\dfrac{1}{2^{500}}>\dfrac{1}{5^{200}}\)
Ta có:
\(\left(\dfrac{1}{16}\right)^{100}\)giữ nguyên
\(\left(\dfrac{-1}{2}\right)^{500}=\left[\left(\dfrac{-1}{2}\right)^5\right]^{100}=\left(\dfrac{-1}{32}\right)^{100}\)
Vì \(\left(\dfrac{1}{16}\right)^{100}>\left(\dfrac{-1}{32}\right)^{100}\Rightarrow\left(\dfrac{1}{16}\right)^{100}>\left(\dfrac{-1}{2}\right)^{500}\)