K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2021

a)  (3x - 1)^2

b)  (x + 1/2 )^2 = 3/4 >0         

c) 1/2 [ (2x + 1)^2 +1>0 

a) 9x2 - 6x + 2
= [(3x)2 - 2.3x + 1] + 1
= (3x - 1)2 + 1 > 0

b) x2 + x + 1
= (x2 + 2.x.1/2 + 1/4) - 1/4 + 1
= (x + 1/2)2 + 3/4 > 0

c) 2x2 + 2x + 1
= (x2 + 2x + 1) + x2
= (x + 1)2 + x2 > 0

Vậy các biểu thức trên luôn có giá trị dương với mọi giá trị của biến

nha bạn 

a: \(x^2-5x+10\)

\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{15}{4}\)

\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{15}{4}>0\forall x\)

b: \(2x^2+8x+15\)

\(=2\left(x^2+4x+\dfrac{15}{2}\right)\)

\(=2\left(x^2+4x+4+\dfrac{7}{2}\right)\)

\(=2\left(x+2\right)^2+7>0\forall x\)

7 tháng 10 2021

Cảm ơn ạyeu

 

25 tháng 3 2016

đề đúng không vậy bạn?

10 tháng 9 2021

\(E=2x^2+y^2-2xy-6x+12=\left(x-y\right)^2+\left(x-3\right)^2+3\ge3>0\)

9 tháng 8 2018

a)(3x-1)^2=1>0

b)(x+1/2)^2=3/4>0

c)1/2[(2x+1)^2+1]>0

9 tháng 8 2018

a﴿﴾3x‐1﴿^2=1>0

b﴿﴾x+1/2﴿^2=3/4>0

c﴿1/2[﴾2x+1﴿^2+1]>0

17 tháng 9 2021

a)\(A=x^2+x+1=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)

b) \(B=2x^2+2x+1=2\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{1}{2}=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}>0\)

23 tháng 9 2021

\(E=x^2+2x+15=\left(x^2+2x+1\right)+14=\left(x+1\right)^2+14\ge14>0\forall x\)

23 tháng 9 2021

E=(x2+2x+1)+14=(x+1)2+14

ta có (x+1)2 >=0 với mọi x

suy ra E=(x2+2x+1)+14=(x+1)2+14 >0 với mọi biến x

6 tháng 8 2016

a)

2x2+2x+1

=(x+1)2+x2

(x+1)luôn lớn hơn hoặc =0 

dấu "=" xảy ra khi x=-1. mà với x=-1 thì x2=1 => biểu thức trên =1

x2 luôn lớn hơn hoặc =0

dấu "=" xảy ra khi x=0=> (x+1)2=1 => biểu thức trên =1

vậy biểu thức này có giá trị dương ( >0 )  với mọi giá trị của biến

b)9x2-6x+2

=(3x+1)+1

ta có: (3x+1)2 luôn lớ hơn hoặc =0

=> (3x+1)2+1 luôn lớn hơn hoặc =1

=> (3x+1)^2+1 luôn dương với mọi giá trị của biến

 

6 tháng 8 2016

a) \(2x^2+2x+1=2\left(x^2+x+\frac{1}{2}\right)=2\left[\left(x+\frac{1}{2}\right)^2+\frac{1}{4}\right]=\frac{1}{2}+2\left(x+\frac{1}{2}\right)^2\)

Vì: \(2\left(x+\frac{1}{2}\right)^2\ge0\)  với mọi x

=> \(\frac{1}{2}+2\left(x+\frac{1}{2}\right)^2>0\)

Vậy biểu thức trên luôn luôn dương với mọi giá trị của biến

b) \(9x^2-6x+2=9x^2-6x+1+1=\left(3x-1\right)^2+1\)

Vì: \(\left(3x-1\right)^2\ge0\)  với mọi giá trị của x

=> \(\left(3x-1\right)^2+1>0\)

vậy biểu thức trên luôn luôn dương với mọi giá trị của x

19 tháng 8 2021

x^2-8x+20=(x^2-8x+16)+4

                 =(x-4)^2+4>0(vì (x-4)^2>=0)

4x^2-12x+11=4x^2-12x+9+2

                     =(2x-3)^2+2>0

x^2-x+1=x^2-x+1/4+3/4

             =(x-1/2)^2+3/4>0

x^2-2x+y^2+4y+6

=x^2-2x+1+y^2+4y+4+1

=(x-1)^2+(y+2)^2+1>0

a: \(x^2-8x+20\)

\(=x^2-8x+16+4\)

\(=\left(x-4\right)^2+4>0\forall x\)

b: Ta có: \(4x^2-12x+11\)

\(=4x^2-12x+9+2\)

\(=\left(2x-3\right)^2+2>0\forall x\)

c: Ta có: \(x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

d: Ta có: \(x^2-2x+y^2+4y+6\)

\(=x^2-2x+1+y^2+4y+4+1\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+1>0\forall x,y\)

\(A=25x^2-20x+7\)

\(\Rightarrow A=\left(5x\right)^2-2.2.5x+2^2-2^2+7\)

\(A=\left(5x-2\right)^2+3\ge3\)

Vậy \(A\ge3\)với mợi GT x