K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2021

a)  (3x - 1)^2

b)  (x + 1/2 )^2 = 3/4 >0         

c) 1/2 [ (2x + 1)^2 +1>0 

a) 9x2 - 6x + 2
= [(3x)2 - 2.3x + 1] + 1
= (3x - 1)2 + 1 > 0

b) x2 + x + 1
= (x2 + 2.x.1/2 + 1/4) - 1/4 + 1
= (x + 1/2)2 + 3/4 > 0

c) 2x2 + 2x + 1
= (x2 + 2x + 1) + x2
= (x + 1)2 + x2 > 0

Vậy các biểu thức trên luôn có giá trị dương với mọi giá trị của biến

nha bạn 

26 tháng 7 2021

\(a,9x^2-6x+2\)

\(\left(3x-1\right)^2+1\ge1>0\)

vậy pt luôn dương

\(b,x^2+x+1\)

\(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)

vậy pt luôn dương

\(c,2x^2+2x+1\)

\(\left(\sqrt{2}x+\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}\ge\frac{1}{2}>0\)

vậy pt luôn dương

26 tháng 7 2021

Trả lời:

a, \(9x^2-6x+2=\left(3x\right)^2-2.3x.1+1+1=\left(3x-1\right)^2+1\ge1>0\forall0\)

Dấu "=" xảy ra khi 3x - 1 = 0 <=> x = 1/3

Vậy bt luôn dương với mọi x

b, \(x^2+x+1=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

Dấu "=" xảy ra khi x + 1/2 = 0 <=> x = - 1/2

Vậy bt luôn dương với mọi x

c, \(2x^2+2x+1=2\left(x^2+x+\frac{1}{2}\right)=2\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\right)\)

\(=2\left[\left(x+\frac{1}{2}\right)^2+\frac{1}{4}\right]=2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}>0\forall x\)

Dấu "=" xảy ra khi x + 1/2 = - 1/2

Vậy bt luôn dương với mọi x

30 tháng 8 2021

a, \(9x^2-6x+2=9x^2-6x+1+1=\left(3x-1\right)^2+1\ge1>0\forall x\)

Vậy ta có đpcm 

b, \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

Vậy ta có đpcm 

c, \(2x^2+2x+1=2\left(x^2+x+\frac{1}{4}-\frac{1}{4}\right)+1\)

\(=2\left(x+\frac{1}{2}\right)^2-\frac{1}{2}+1=2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}>0\forall x\)

Vậy ta có đpcm 

28 tháng 6 2016

x4-2x+2

= (x2)2-2x2+1+2x2-2x+1

=(x2-1)2+2(x2-x+1)

=(x2-1)2+2(x2-2.1/2x+1/4+1/4)

=(x2-1)2+2[(x-1/2)2+1/4]

vì (x2-1)2 lớn hơn hoặc = 0 với mọi x và 2[(x-1/2)2+1/4] lớn hơn hoặc = 0 với mọi x 

nên (x2-1)2+2[(x-1/2)2+1/4] dương hay x4-2x+2 dương

30 tháng 10 2016

a) 9x2 - 6x + 2 = (3x)2 - 2.3x.1 + 12 + 1 = (3x - 1)2 + 1 mà\(\left(3x+1\right)^2\ge0\Rightarrow\left(3x+1\right)^2+1\ge1>0\)

b) x2 + x + 1 = x2 + 2.x.\(\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)\(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)

c) 2x2 + 2x + 1 =\(\left(\sqrt{2}x\right)^2+2\sqrt{2}x.\frac{1}{\sqrt{2}}+\left(\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=\left(\sqrt{2}x+\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}\ge\frac{1}{2}>0\)

25 tháng 9 2017

a)    \(9x^2-6x+2=\left(\left(3x\right)^2-2.3x.1+1\right)+1=\left(3x-1\right)^2+1>0\)

b)   .\(x^2+x+1=\left(\left(x^2\right)+2.x.\frac{1}{2}+\frac{1}{4}\right)-\frac{1}{4}+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

c)    \(2x^2+2x+1=x^2+\left(x^2+2x+1\right)=x^2+\left(x+1\right)^2>0\)

19 tháng 6 2018

a. \(2x^2-4x+10=x^2-2x+1+x^2-2x+1+8=\left(x-1\right)^2+\left(x-1\right)^2+8=2\left(x-1\right)^2+8\)

Vì \(2\left(x-1\right)^2\ge0\Rightarrow2\left(x-1\right)^2+8\ge8\)

Vậy...

b. \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy..

c. \(2x^2-6x+5=x^2-4x+4+x^2-2x+1=\left(x-2\right)^2+\left(x-1\right)^2\)

Vì \(\hept{\begin{cases}\left(x-2\right)^2\ge0\\\left(x-1\right)^2\ge0\end{cases}}\Rightarrow\left(x-2\right)^2+\left(x-1\right)^2\ge0\)

Vậy...

16 tháng 4 2017

mình sẽ giải câu 3 cho bạn nhé

đề bài=> \(\frac{1}{x^2+4x+5x+20}+\frac{1}{x^2+5x+6x+30}+\frac{1}{x^2+6x+7x+42}=\frac{1}{18}\)

\(\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-...-\frac{1}{x+7}=\frac{1}{18}\)

\(\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)

\(18\left(x+7\right)-18\left(x+4\right)=\left(x+7\right)\left(x+4\right)\)

\(\left(x+13\right)\left(x-2\right)=0\)

\(\orbr{\begin{cases}x=-13\\x=2\end{cases}}\)

nhớ thank mk nhé

16 tháng 4 2017

câu 5 nà

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

<=>\(1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\ge9\)

<=>\(3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge9\)

<=>\(3+2+2+2\ge9\)(bất đẳng thức luôn đúng)

=> điều phải chứng minh

a, A= 2x3+3x2+8x-5 = 2x3-x2+4x2-2x+10x-5

      = x2.(2x-1) +2x.(2x-1)+5.(2x-1) = (x2+2x+5).(2x-1)

Thương tìm được là:  x2+2x+5

b,  Ta có: x2+2x+5= (x+1)2+4>0

c,  x2+2x+5=8   <=>   (x+1)2+4=8

   <=>  (x+1)2=4   <=>   x+1=2 => x=1

                  hoặc     x+1=-2 => x=-3

a: \(=-\left(x^2+10x-11\right)\)

\(=-\left(x^2+10x+25-36\right)\)

\(=-\left(x+5\right)^2+36< =36\)

Dấu '=' xảy ra khi x=-5

b: \(=-\left(x^2-6x+5\right)\)

\(=-\left(x^2-6x+9-4\right)\)

\(=-\left(x-3\right)^2+4< =4\)

Dấu '=' xảy ra khi x=3

c: \(=-2\left(x^2-x+\dfrac{5}{2}\right)\)

\(=-2\left(x^2-x+\dfrac{1}{4}+\dfrac{9}{4}\right)\)

\(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}< =-\dfrac{9}{2}\)

Dấu '=' xảy ra khi x=1/2

d: \(=2x+8-x^2-4x\)

\(=-x^2-2x+8\)

\(=-\left(x^2+2x-8\right)\)

\(=-\left(x^2+2x+1-9\right)\)

\(=-\left(x+1\right)^2+9< =9\)

Dấu '=' xảy ra khi x=-1

8 tháng 3 2021

\(A=x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1\ge1\forall x\)

Dấu "=" xảy ra <=> x = 3

Vậy MinA = 1

\(B=5x^2-10x+3=5\left(x^2-2x+1\right)-2=5\left(x-1\right)^2-2\ge-2\forall x\)

Dấu "=" xảy ra <=> x = 1

Vậy MinB = -2

\(C=2x^2+8x+y^2-10y+43=2\left(x^2+4x+4\right)+\left(y^2-10y+25\right)+10=2\left(x+2\right)^2+\left(y-5\right)^2+10\ge10\forall x,y\)

Dấu "=" xảy ra <=> x = -2 ; y = 5

Vậy MinC = 10

8 tháng 3 2021

\(A=x^2-6x+10\)

\(=\left(x^2-6x+9\right)+1\)

\(=\left(x-3\right)^2+1\ge1\forall x\)

Dấu"=" xảy ra khi \(x-3=0\Leftrightarrow x=3\)

Vậy \(Min_A=1\Leftrightarrow x=3\)

b,\(B=5x^2-10x+3\)

\(=5\left(x^2-2x+1\right)-2\)

\(=5\left(x-1\right)^2-2\ge-2\forall x\)

Dấu"=" xảy ra khi \(x-1=0\Leftrightarrow x=1\)

Vậy \(Min_B=-2\Leftrightarrow x=1\)

c,\(C=2x^3+8x+y^2-10+43\)

\(=2x^2+8x+8+y^2-10y+25+10\)

\(=2\left(x^2+4x+4\right)+\left(y^2-10y+25\right)+10\)

\(=2\left(x+2\right)^2+\left(y-5\right)^2+10\ge10\forall x,y\)

Dấu"=" xảy ra khi \(\orbr{\begin{cases}x+2=0\\y-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\y=5\end{cases}}}\)

Vậy \(Min_C=10\Leftrightarrow x=-2;y=5\)