Cho \(\dfrac{x}{x^2-x+1}\)=\(\dfrac{1}{5}\)
Tính E=\(\dfrac{x^2}{x^4+x^2+1}\)
mà k cần tìm x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)4/5+x=2/3
x=2/3-4/5
x=-2/15
b)-5/6-x=2/3
x=-5/6-2/3
x=-3/2
c)1/2x+3/4=-3/10
1/2x=-3/10-3/4
1/2x=-21/20
x=-21/20:1/2
x=-21/10
d)x/3-1/2=1/5
x/3=1/5+1/2
x/3=7/10
10x/30=21/30
10x=21
x=21:10
x=21/10
a:=>0,75x-x+1,25x=0,2
=>x=0,2
b: =>1/3-x=-3/6+4/6=1/6
=>x=1/3-1/6=1/6
c: =>(x-1)/45=-6/30=-1/5
=>x-1=-9
=>x=-8
d: =>(2/5x-1)=-5/7
=>2/5x=2/7
=>x=5/7
\(\dfrac{x+1}{3}+\dfrac{x+1}{4}+\dfrac{x+1}{5}=\dfrac{x+1}{6}\)
\(\dfrac{x+1}{3}+\dfrac{x+1}{4}+\dfrac{x+1}{5}-\dfrac{x+1}{6}=0\)
\(\left(x+1\right)\left(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}\right)=0\)
\(\)vì \(\dfrac{1}{3}>\dfrac{1}{6};\dfrac{1}{4}>\dfrac{1}{6};\dfrac{1}{5}>\dfrac{1}{6}=>\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}>0\)
\(=>x+1=0\)
\(=>x=-1\)
b,
\(\dfrac{x+1}{2020}+\dfrac{x+2}{2019}=\dfrac{x+3}{2018}+\dfrac{x+4}{2017}\)
\(\left(\dfrac{x+1}{2020}+1\right)+\left(\dfrac{x+2}{2019}+1\right)=\left(\dfrac{x+3}{2018}+1\right)+\left(\dfrac{x+4}{2017}+1\right)\)
\(\dfrac{x+2021}{2020}+\dfrac{x+2021}{2019}=\dfrac{x+2021}{2018}+\dfrac{x+2021}{2017}\)
\(=>\dfrac{x+2021}{2020}+\dfrac{x+2021}{2019}-\dfrac{x+2021}{2018}-\dfrac{x+2021}{2017}=0\)
\(=>\left(x+2021\right)\left(\dfrac{1}{2020}+\dfrac{1}{2019}-\dfrac{1}{2018}-\dfrac{1}{2017}\right)=0\)
Vì \(\dfrac{1}{2020}< \dfrac{1}{2018};\dfrac{1}{2019}< \dfrac{1}{2017}=>\dfrac{1}{2020}+\dfrac{1}{2019}-\dfrac{1}{2018}-\dfrac{1}{2017}< 0\)
\(=>x+2021=0\)
\(=>x=-2021\)
c,
\(\dfrac{x+2}{327}+\dfrac{x+3}{326}+\dfrac{x+4}{325}+\dfrac{x+5}{324}+\dfrac{x+349}{5}=0\)
\(\left(\dfrac{x+2}{327}+1\right)+\left(\dfrac{x+3}{326}+1\right)+\left(\dfrac{x+4}{325}+1\right)+\left(\dfrac{x+5}{324}+1\right)+\left(\dfrac{x+349}{5}-4\right)=0\)
\(\dfrac{x+329}{327}+\dfrac{x+329}{326}+\dfrac{x+329}{325}+\dfrac{x+329}{324}+\dfrac{x+329}{5}=0\)
\(=>\left(x+329\right)\left(\dfrac{1}{327}+\dfrac{1}{326}+\dfrac{1}{325}+\dfrac{1}{324}+\dfrac{1}{5}\right)=0\)
Vì \(\dfrac{1}{327}+\dfrac{1}{326}+\dfrac{1}{325}+\dfrac{1}{324}+\dfrac{1}{5}>0\)
\(=>x+329=0\)
\(=>x=-329\)
a: \(E=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{\left(x+1\right)\left(x-1\right)+x+2-x^2}{x\left(x-1\right)}\)
\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\dfrac{x\left(x-1\right)}{x^2-1+x+2-x^2}\)
\(=\dfrac{x^2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2}{x-1}\)
c: |2x+1|=5
=>2x+1=5 hoặc 2x+1=-5
=>x=-3(nhận) hoặc x=2(nhận)
Khi x=-3 thì \(E=\dfrac{\left(-3\right)^2}{-3-1}=-\dfrac{9}{4}\)
Khi x=2 thì \(E=\dfrac{2^2}{2-1}=4\)
`a)P=(x/(x+2)-(x^3-8)/(x^3+8)*(x^2-2x+4)/(x^2-4)):4/(x+2)`
`đk:x ne 0,x ne -2`
`P=(x/(x+2)-((x-2)(x^2+2x+4))/((x+2)(x^2-2x+4))*(x^2-2x+4)/((x-2)(x+2)))*(x+2)/4`
`=(x/(x+2)-(x^2+2x+4)/(x+2)^2)*(x+2)/4`
`=(x^2+2x-x^2-2x-4)/(x+2)^2*(x+2)/4`
`=-4/(x+2)^2*(x+2)/4`
`=-1/(x+2)`
`b)P<0`
`<=>-1/(x+2)<0`
Vì `-1<0`
`<=>x+2>0`
`<=>x> -2`
`c)P=1/x+1(x ne 0)`
`<=>-1/(x+2)=1/x+1`
`<=>1/x+1+1/(x+2)=0``
`<=>x+2+x(x+2)+x=0`
`<=>x^2+4x+2=0`
`<=>` \(\left[ \begin{array}{l}x=\sqrt2-2\\x=-\sqrt2-2\end{array} \right.\)
`d)|2x-1|=3`
`<=>` \(\left[ \begin{array}{l}2x=4\\2x=-2\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=2(l)\\x=-1(tm)\end{array} \right.\)
`x=-1=>P=-1/(-1+2)=-1`
`e)P=-1/(x+2)` thì nhỏ nhất cái gì nhỉ?
a) đk: \(x\ne-2;2\)
\(P=\left[\dfrac{x}{x+2}-\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}.\dfrac{x^2-2x+4}{\left(x-2\right)\left(x+2\right)}\right]:\dfrac{4}{x+2}\)
= \(\left[\dfrac{x}{x+2}-\dfrac{x^2+2x+4}{\left(x+2\right)^2}\right].\dfrac{x+2}{4}\)
= \(\dfrac{x^2+2x-x^2-2x-4}{\left(x+2\right)^2}.\dfrac{x+2}{4}\) = \(\dfrac{-4}{4\left(x+2\right)}=\dfrac{-1}{x+2}\)
b) Để P < 0
<=> \(\dfrac{-1}{x+2}< 0\)
<=> x +2 > 0
<=> x > -2 ( x khác 2)
c) Để P= \(\dfrac{1}{x}+1\)
<=> \(\dfrac{-1}{x+2}=\dfrac{1}{x}+1\)
<=> \(\dfrac{1}{x}+\dfrac{1}{x+2}+1=0\)
<=> \(\dfrac{x+2+x+x\left(x+2\right)}{x\left(x+2\right)}=0\)
<=> x2 + 4x + 2 = 0
<=> (x+2)2 = 2
<=> \(\left[{}\begin{matrix}x=\sqrt{2}-2\left(c\right)\\x=-\sqrt{2}-2\left(c\right)\end{matrix}\right.\)
d) Để \(\left|2x-1\right|=3\)
<=> \(\left[{}\begin{matrix}2x-1=3< =>x=2\left(l\right)\\2x-1=-3< =>x=-1\left(c\right)\end{matrix}\right.\)
Thay x = -1, ta có:
P = \(\dfrac{-1}{-1+2}=-1\)
a: =>x-3=9
=>x=12
b: =>10-x=-26
=>x=36
c: =>x:4-1=2
=>x:4=3
=>x=12
d: =>x^2=4
=>x=2 hoặc x=-2
e: =>(x-2)^2=100
=>x-2=10 hoặc x-2=-10
=>x=12 hoặc x=-8
4)a)\(\dfrac{x+5}{x-5}-\dfrac{x-5}{x+5}=\dfrac{20}{x^2-25}\)(1)
ĐKXĐ:\(\left\{{}\begin{matrix}x-5\ne0\\x+5\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne5\\x\ne-5\end{matrix}\right.\)
(1)\(\Rightarrow\left(x+5\right)\left(x+5\right)-\left(x-5\right)\left(x-5\right)=20\)
\(\Leftrightarrow x^2+10x+25-\left(x^2-10x+25\right)=20\)
\(\Leftrightarrow x^2+10x+25-x^2+10x-25=20\)
\(\Leftrightarrow x^2-x^2+10x+10x=-25+25=20\)
\(\Leftrightarrow20x=20\)
\(\Leftrightarrow x=1\left(nh\text{ậ}n\right)\)
S=\(\left\{1\right\}\)
a) Ta có: \(\dfrac{1}{7}+x=-\dfrac{2}{3}\)
\(\Leftrightarrow x=-\dfrac{2}{3}-\dfrac{1}{7}=\dfrac{-14}{21}-\dfrac{3}{21}\)
hay \(x=-\dfrac{17}{21}\)
Vậy: \(x=-\dfrac{17}{21}\)
b) Ta có: \(\dfrac{-2}{3}:x=\dfrac{-5}{6}\)
\(\Leftrightarrow x=\dfrac{-2}{3}:\dfrac{-5}{6}=\dfrac{-2}{3}\cdot\dfrac{6}{-5}=\dfrac{-12}{-15}=\dfrac{4}{5}\)
Vậy: \(x=\dfrac{4}{5}\)
c) Ta có: \(\left(\dfrac{3}{5}-2x\right)\cdot\dfrac{5}{8}=1\)
\(\Leftrightarrow\left(\dfrac{3}{5}-2x\right)=1:\dfrac{5}{8}=\dfrac{8}{5}\)
\(\Leftrightarrow-2x=\dfrac{8}{5}-\dfrac{3}{5}=1\)
hay \(x=-\dfrac{1}{2}\)
Vậy: \(x=-\dfrac{1}{2}\)
d) Ta có: \(\dfrac{3}{4}+\dfrac{2}{5}x=\dfrac{29}{60}\)
\(\Leftrightarrow x\cdot\dfrac{2}{5}=\dfrac{29}{60}-\dfrac{3}{4}=\dfrac{29}{60}-\dfrac{45}{60}=\dfrac{-16}{60}=\dfrac{-4}{15}\)
hay \(x=\dfrac{-4}{15}:\dfrac{2}{5}=\dfrac{-4}{15}\cdot\dfrac{5}{2}=\dfrac{-20}{30}=-\dfrac{2}{3}\)
Vậy: \(x=-\dfrac{2}{3}\)
e) Ta có: \(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{1}{4}:x=\dfrac{2}{5}-\dfrac{3}{4}=\dfrac{8}{20}-\dfrac{15}{20}=\dfrac{-7}{20}\)
hay \(x=-\dfrac{1}{4}:\dfrac{7}{20}=\dfrac{-1}{4}\cdot\dfrac{20}{7}=\dfrac{-20}{28}=\dfrac{-5}{7}\)
Vậy: \(x=-\dfrac{5}{7}\)
f) Ta có: \(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\)
\(\Leftrightarrow-x+\dfrac{11}{12}-\dfrac{2}{5}-\dfrac{2}{3}=0\)
\(\Leftrightarrow-x+\dfrac{55}{60}-\dfrac{24}{60}-\dfrac{40}{60}=0\)
\(\Leftrightarrow-x-\dfrac{9}{60}=0\)
\(\Leftrightarrow-x=\dfrac{9}{60}=\dfrac{3}{20}\)
hay \(x=-\dfrac{3}{20}\)
Vậy: \(x=-\dfrac{3}{20}\)
g) Ta có: \(\left|x+\dfrac{1}{3}\right|-4=\dfrac{-1}{2}\)
\(\Leftrightarrow\left|x+\dfrac{1}{3}\right|=\dfrac{-1}{2}+4=\dfrac{-1}{2}+\dfrac{8}{2}=\dfrac{7}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{3}=\dfrac{7}{2}\\x+\dfrac{1}{3}=-\dfrac{7}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}-\dfrac{1}{3}=\dfrac{21}{6}-\dfrac{2}{6}=\dfrac{19}{6}\\x=-\dfrac{7}{2}-\dfrac{1}{3}=\dfrac{-21}{6}-\dfrac{2}{6}=\dfrac{-23}{6}\end{matrix}\right.\)
Vậy: \(x\in\left\{\dfrac{19}{6};-\dfrac{23}{6}\right\}\)
\(a,ĐK:...\\ PT\Leftrightarrow x^2-6x=x^2-7x+10\\ \Leftrightarrow x=10\left(tm\right)\\ b,ĐK:...\\ PT\Leftrightarrow2x\left(4-x\right)-\left(2-2x\right)\left(8-x\right)=\left(8-x\right)\left(4-x\right)\\ \Leftrightarrow8x-2x^2+16+18x-2x^2=32-12x+x^2\\ \Leftrightarrow3x^2-38x+16=0\left(casio\right)\\ c,ĐK:...\\ PT\Leftrightarrow2x\left(x-4\right)-4x=0\\ \Leftrightarrow2x^2-12x=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)
\(\Rightarrow x^2-x+1=5x\Leftrightarrow x^2+1=6x\)
\(\dfrac{x^2}{x^4+x^2+1}=\dfrac{x^2}{\left(x^2+1\right)^2-x^2}=\dfrac{x^2}{\left(6x\right)^2-x^2}=\dfrac{1}{35}\)
\(\dfrac{x}{x^2-x+1}=\dfrac{1}{5}\left(1\right)\)
có x^2 -x+1 > 0 mọi x => x>0
\(\left(1\right)\Leftrightarrow\dfrac{x^2-x+1}{x}=5\)
\(x+\dfrac{1}{x}=6;x^2+\dfrac{1}{x^2}=34\)
\(\left(1\right)\Leftrightarrow\dfrac{1}{E}=\left(\dfrac{x^4+x^2+1}{x^2}\right)=x^2+1+\dfrac{1}{x^2}=34+1=35\)
\(E=\dfrac{1}{35}\)