K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2021

`a)P=(x/(x+2)-(x^3-8)/(x^3+8)*(x^2-2x+4)/(x^2-4)):4/(x+2)`

`đk:x ne 0,x ne -2`

`P=(x/(x+2)-((x-2)(x^2+2x+4))/((x+2)(x^2-2x+4))*(x^2-2x+4)/((x-2)(x+2)))*(x+2)/4`

`=(x/(x+2)-(x^2+2x+4)/(x+2)^2)*(x+2)/4`

`=(x^2+2x-x^2-2x-4)/(x+2)^2*(x+2)/4`

`=-4/(x+2)^2*(x+2)/4`

`=-1/(x+2)`

`b)P<0`

`<=>-1/(x+2)<0`

Vì `-1<0`

`<=>x+2>0`

`<=>x> -2`

`c)P=1/x+1(x ne 0)`

`<=>-1/(x+2)=1/x+1`

`<=>1/x+1+1/(x+2)=0``

`<=>x+2+x(x+2)+x=0`

`<=>x^2+4x+2=0`

`<=>` \(\left[ \begin{array}{l}x=\sqrt2-2\\x=-\sqrt2-2\end{array} \right.\) 

`d)|2x-1|=3`

`<=>` \(\left[ \begin{array}{l}2x=4\\2x=-2\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=2(l)\\x=-1(tm)\end{array} \right.\) 

`x=-1=>P=-1/(-1+2)=-1`

`e)P=-1/(x+2)` thì nhỏ nhất cái gì nhỉ?

24 tháng 6 2021

a) đk: \(x\ne-2;2\)

 \(P=\left[\dfrac{x}{x+2}-\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}.\dfrac{x^2-2x+4}{\left(x-2\right)\left(x+2\right)}\right]:\dfrac{4}{x+2}\)

\(\left[\dfrac{x}{x+2}-\dfrac{x^2+2x+4}{\left(x+2\right)^2}\right].\dfrac{x+2}{4}\)

\(\dfrac{x^2+2x-x^2-2x-4}{\left(x+2\right)^2}.\dfrac{x+2}{4}\) = \(\dfrac{-4}{4\left(x+2\right)}=\dfrac{-1}{x+2}\)

b) Để P < 0

<=> \(\dfrac{-1}{x+2}< 0\)

<=> x +2 > 0

<=> x > -2 ( x khác 2)

c) Để P= \(\dfrac{1}{x}+1\)

<=> \(\dfrac{-1}{x+2}=\dfrac{1}{x}+1\)

<=> \(\dfrac{1}{x}+\dfrac{1}{x+2}+1=0\)

<=> \(\dfrac{x+2+x+x\left(x+2\right)}{x\left(x+2\right)}=0\)

<=> x2 + 4x + 2 = 0

<=> (x+2)2 = 2

<=> \(\left[{}\begin{matrix}x=\sqrt{2}-2\left(c\right)\\x=-\sqrt{2}-2\left(c\right)\end{matrix}\right.\)

d) Để \(\left|2x-1\right|=3\)

<=> \(\left[{}\begin{matrix}2x-1=3< =>x=2\left(l\right)\\2x-1=-3< =>x=-1\left(c\right)\end{matrix}\right.\)

Thay x = -1, ta có:

P = \(\dfrac{-1}{-1+2}=-1\)

 

a: Sửa đề: \(P=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right):\dfrac{2}{x^2-2x+1}\)

\(=\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right)\cdot\dfrac{\left(x-1\right)^2}{2}\)

\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)^2}\cdot\dfrac{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)^2}{2}\)

\(=\dfrac{x-\sqrt{x}-2-\left(x+\sqrt{x}-2\right)}{\sqrt{x}-1}\cdot\dfrac{1}{2}\)

\(=\dfrac{-\sqrt{x}}{\sqrt{x}-1}\)

b: Để P>0 thì \(-\dfrac{\sqrt{x}}{\sqrt{x}-1}>0\)

=>\(\dfrac{\sqrt{x}}{\sqrt{x}-1}< 0\)

=>\(\sqrt{x}< 1\)

=>\(0< =x< 1\)

c: Thay \(x=7-4\sqrt{3}=\left(2-\sqrt{3}\right)^2\) vào P, ta được:

\(P=\dfrac{-\sqrt{\left(2-\sqrt{3}\right)^2}}{\sqrt{\left(2-\sqrt{3}\right)^2}-1}\)

\(=\dfrac{-\left(2-\sqrt{3}\right)}{2-\sqrt{3}-1}=\dfrac{-2+\sqrt{3}}{1-\sqrt{3}}=\dfrac{2-\sqrt{3}}{\sqrt{3}-1}\)

\(=\dfrac{\sqrt{3}-1}{2}\)

10 tháng 7 2021

a) \(B=\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\left(x\ge0,x\ne1\right)\)

\(=\left(\dfrac{2\sqrt{x}+x}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{x+\sqrt{x}+1-\sqrt{x}-2}{x+\sqrt{x}+1}\)

\(=\dfrac{2\sqrt{x}+x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{x-1}{x+\sqrt{x}+1}\)

\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{x+\sqrt{x}+1}{x-1}=\dfrac{1}{x-1}\)

 

10 tháng 7 2021

undefinedundefined

28 tháng 6 2023

\(a,P=\left(\dfrac{\sqrt{x}-1}{x-4}-\dfrac{\sqrt{x}+1}{x-4\sqrt{x}+4}\right).\dfrac{x\sqrt{x}-2x-4\sqrt{x}+8}{6\sqrt{x}-18}\left(dk:x\ne4,x\ge0,x\ne9\right)\)

\(=\left(\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-2\right)^2}\right).\dfrac{\sqrt{x^2}\left(\sqrt{x}-2\right)-4\left(\sqrt{x}-2\right)}{6\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)^2\left(\sqrt{x}+2\right)}.\dfrac{\left(x-4\right)\left(\sqrt{x}-2\right)}{6\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x-3\sqrt{x}+2-x-3\sqrt{x}-2}{\left(x-4\right)\left(\sqrt{x}-2\right)}.\dfrac{\left(x-4\right)\left(\sqrt{x}-2\right)}{6\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-6\sqrt{x}}{6\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-\sqrt{x}}{\sqrt{x}-3}\)

\(b,P>0\Leftrightarrow\dfrac{-\sqrt{x}}{\sqrt{x}-3}>0\Leftrightarrow-\sqrt{x}>0\Leftrightarrow\sqrt{x}< -1\left(ktm\right)\)

\(\Leftrightarrow\sqrt{x}-3>0\Leftrightarrow\sqrt{x}>3\Leftrightarrow x>9\)

\(c,P< 1\Leftrightarrow-\dfrac{\sqrt{x}}{\sqrt{x}-3}< 1\Leftrightarrow-\sqrt{x}< 1\Leftrightarrow\sqrt{x}>-1\left(ktm\right)\)

\(\Leftrightarrow\sqrt{x}-3< 1\Leftrightarrow\sqrt{x}< 4\Leftrightarrow x< 2\)

a: \(P=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)^2\left(\sqrt{x}+2\right)}\cdot\dfrac{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)-2\sqrt{x}\left(\sqrt{x}+2\right)}{6\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)^2}\cdot\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)^2}{6\left(\sqrt{x}-3\right)}\)

=1/3(căn x-3)

b: P>0

=>căn x-3>0

=>x>9

c: P<1

=>P-1<0

=>\(\dfrac{1-3\sqrt{x}+9}{3\sqrt{x}-9}< 0\)

=>\(\dfrac{-3\sqrt{x}+10}{3\sqrt{x}-9}< 0\)

=>(3căn x-10)/(3căn x-9)>0

=>x>100/3 hoặc 0<x<9

a) ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne4\end{matrix}\right.\)

b) Ta có: \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\right)\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{4}{x-4}\right)\)

\(=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}-2+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

d) Để A>0 thì \(\sqrt{x}-2>0\)

hay x>4

24 tháng 6 2021

`đk:x ne +-3,x ne -2`

`B=(21/(x^2-9)-(x-4)/(3-x)-(x-1)/(3+x)):(1-1/(x+3))`

`=(21/(x^2-9)+(x-4)/(x-3)-(x-1)/(x+3)):((x+3-1)/(x+3))`

`=((21+x^2-x-12-x^2+4x-3)/((x-3)(x+3))):(x+2)/(x+3)`

`=(3x+6)/((x-3)(x+3))*(x+3)/(x+2)`

`=(3x+6)/((x-3)(x+2))`

`=3/(x-3)`

`b)|2x+1|=5`

`<=>` \(\left[ \begin{array}{l}2x=4\\2x=-6\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=2(tm)\\x=-3(l)\end{array} \right.\) 

`=>B=3/(2-3)=-3`

`c)B=-3/5`

`<=>3/(x-3)=3/(-5)`

`<=>x-3=-5`

`<=>x=-2(l)`

`d)B<0`

`<=>3/(x-3)<0`

Mà `3>0`

`=>x-3<0<=>x<3`

24 tháng 6 2021

a) đk: \(x\ne\pm3\)

 \(B=\left[\dfrac{21}{\left(x-3\right)\left(x+3\right)}+\dfrac{x-4}{x-3}-\dfrac{x-1}{x+3}\right]:\left(\dfrac{x+3-1}{x+3}\right)\)

\(\left[\dfrac{21+\left(x-4\right)\left(x+3\right)-\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\right]:\dfrac{x+2}{x+3}\)

\(\dfrac{21+x^2-x-12-x^2+4x-3}{\left(x-3\right)\left(x+3\right)}.\dfrac{x+3}{x+2}\)

\(\dfrac{3x+6}{\left(x-3\right)\left(x+3\right)}.\dfrac{x+3}{x+2}=\dfrac{3}{x-3}\)

b) Để \(\left|2x+1\right|=5\)

<=> \(\left[{}\begin{matrix}2x+1=5< =>x=2\left(c\right)\\2x+1=-5< =>x=-3\left(l\right)\end{matrix}\right.\)

Thay x = 2, ta có;

B = \(\dfrac{3}{2-3}=-3\)

c) Để B = \(\dfrac{-3}{5}\)

<=> \(\dfrac{3}{x-3}=\dfrac{-3}{5}\)

<=> x - 3 = -5

<=> x = -2

d) Để B < 0

<=> \(\dfrac{3}{x-3}< 0\)

<=> x - 3 < 0

<=> x < 3

5 tháng 5 2021

tìm cả đk giúp mik vs

NV
5 tháng 5 2021

ĐKXĐ: \(x>0;x\ne1\)

\(A=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{2\left(\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}-\dfrac{2-x}{x\left(\sqrt{x}+1\right)}\right)\)

\(=\left(\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{x+2\sqrt{x}}{x\left(\sqrt{x}+1\right)}\right)\)

\(=\dfrac{\left(x+2\sqrt{x}\right).x.\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x+2\sqrt{x}\right)}=\dfrac{x}{\sqrt{x}-1}\)

b.

\(x=4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\Rightarrow\sqrt{x}=\sqrt{3}+1\)

\(\Rightarrow A=\dfrac{4+2\sqrt{3}}{\sqrt{3}+1-1}=\dfrac{4+2\sqrt{3}}{\sqrt{3}}=\dfrac{6+4\sqrt{3}}{3}\)

c.

Để \(\sqrt{A}\) xác định \(\Rightarrow\sqrt{x}-1>0\Rightarrow x>1\)

Ta có:

\(\sqrt{A}=\sqrt{\dfrac{x}{\sqrt{x}-1}}=\sqrt{\dfrac{x}{\sqrt{x}-1}-4+4}=\sqrt{\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}-1}+4}\ge\sqrt{4}=2\)

Dấu "=" xảy ra khi \(\sqrt{x}-2=0\Rightarrow x=4\)