Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đk : \(x\ne0;\ne1\)
\(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=\dfrac{2\left(x^2+x-1\right)}{x\left(x+1\right)}\)
\(\Rightarrow\dfrac{x^2+3x}{x\left(x+1\right)}+\dfrac{x^2-x-2}{x\left(x+1\right)}-\dfrac{2x^2+2x-2}{x\left(x+1\right)}=0\)
\(\Rightarrow\dfrac{x^2+3x+x^2-x-2-2x^2-2x+2}{x\left(x-1\right)}=0\)
\(\Rightarrow\dfrac{0}{x-1}=0\)
=> Phương trình có vô số nghiệm x
b) Đk : \(x\ne2;x\ne3\)
\(\dfrac{2}{x-2}-\dfrac{x}{x+3}=\dfrac{5x}{\left(x-2\right)\left(x+3\right)}-1\)
\(\Rightarrow\dfrac{2x+6}{\left(x-2\right)\left(x+3\right)}-\dfrac{x^2-2x}{\left(x-2\right)\left(x+3\right)}-\dfrac{5x}{\left(x-2\right)\left(x+3\right)}+\dfrac{x^2+x-6}{\left(x-2\right)\left(x+3\right)}\)
=0
\(\Rightarrow\dfrac{2x+6-x^2+2x-5x+x^2+x+6}{\left(x-2\right)\left(x+3\right)}=0\)
\(\Rightarrow\dfrac{12}{\left(x-2\right)\left(x+3\right)}=0\)
=> Phương trình vô nghiệm
c)
\(\Leftrightarrow\dfrac{x^2-x+1}{x^4+x^2+1}-\dfrac{x^2+x+1}{x^4+x^2+1}-\dfrac{1-2x}{x^4+x^2+1}=0\)
\(\Rightarrow\dfrac{x^2-x+1-x^2-x-1-1+2x}{x^4+x^2+1}=0\)
\(\Rightarrow\dfrac{-1}{x^4+x^2+1}=0\)
=> PTVN
d) Thôi tự làm đi, câu này dễ :Vvv
e)
\(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)\)=40
\(\Rightarrow\left[\left(x+1\right)\left(x+5\right)\right]\cdot\left[\left(x+2\right)\left(x+4\right)\right]=40\)
\(\Rightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)=40\)
Đặt
\(x^2+6x+7=t\)
Phương trình tương đương
\(\left(t-1\right)\left(t+1\right)=40\)
\(t^2=41\)
\(\)\(t=\pm\sqrt{41}\)
Thay vào tìm x.
a) \(\dfrac{x+1}{2}+\dfrac{3x-2}{3}=\dfrac{x-7}{12}\)
\(\Leftrightarrow\dfrac{6\left(x+1\right)+4\left(3x-2\right)}{12}=\dfrac{x-7}{12}\)
\(\Leftrightarrow6\left(x+1\right)+4\left(3x-2\right)=x-7\)
\(\Leftrightarrow6x+6+12x-8=x-7\)
\(\Leftrightarrow6x+12x-x=-7-6+8\)
\(\Leftrightarrow17x=-5\)
\(\Leftrightarrow x=\dfrac{-5}{17}\)
Vậy .........................
b) \(\dfrac{2x}{x-3}-\dfrac{5}{x+3}=\dfrac{x^2+21}{x^2-9}\left(ĐKXĐ:x\ne\pm3\right)\)
\(\Leftrightarrow\dfrac{2x\left(x+3\right)-5\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{x^2+21}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow2x\left(x+3\right)-5\left(x-3\right)=x^2+21\)
\(\Leftrightarrow2x^2+6x-5x+15=x^2+21\)
\(\Leftrightarrow2x^2-x^2+x+15-21=0\)
\(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow x^2-2x+3x-6=0\)
\(\Leftrightarrow x\left(x-2\right)+3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(n\right)\\x=-3\left(l\right)\end{matrix}\right.\)
Vậy \(S=\left\{2\right\}\)
d) \(\left(x-4\right)\left(7x-3\right)-x^2+16=0\)
\(\Leftrightarrow\left(x-4\right)\left(7x-3\right)-\left(x^2-16\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(7x-3\right)-\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(7x-3-x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(6x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\6x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{7}{6}\end{matrix}\right.\)
Vậy .........................
P/s: các câu còn lại tương tự, bn tự giải nha
a) Rút gọn :
P = \(\left(\dfrac{2x}{x+3}+\dfrac{10}{x-3}-\dfrac{2x^2+14}{x^2-9}\right):\dfrac{4}{x+3}\)
\(ĐKXĐ:\left\{{}\begin{matrix}x+3\ne0\\x-3\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne-3\\x\ne3\end{matrix}\right.\)
Ta có : \(P=\left[\dfrac{2x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\dfrac{10\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{2x^2+14}{\left(x+3\right)\left(x-3\right)}\right].\dfrac{x+3}{4}\)
\(P=\dfrac{2x^2-6x+10x+30-2x^2-14}{\left(x+3\right)\left(x-3\right)}.\dfrac{x+3}{4}\)
\(P=\dfrac{4x+16}{4x-13}=\dfrac{x+4}{x-3}\)
b) |x| = 3 => \(\left\{{}\begin{matrix}\left|x\right|=3khix\ge0\\\left|x\right|=-3khix< 0\end{matrix}\right.\)
* TH1 : x \(\ge0\)
\(P=\dfrac{x+4}{x-3}=\dfrac{3+4}{3-3}\left(koTMvìmẫu\ne0\right)\)
* TH2 : x < 0
\(P=\dfrac{x+4}{x-3}=\dfrac{-3+4}{-3-3}=\dfrac{-1}{6}\left(Tm\right)\)
c) Để P = \(\dfrac{-1}{2}\) thì :
\(\dfrac{x+4}{x-3}=\dfrac{-1}{2}\)
\(\Leftrightarrow2x+8=3-x\)
\(\Leftrightarrow2x+x=-8+3\)
\(\Leftrightarrow3x=-5\Rightarrow x=\dfrac{-5}{3}\)
d) P \(\le\) 2
<=> \(\dfrac{x+4}{x-3}\le2\)
\(\Leftrightarrow\dfrac{x+4}{x-3}-\dfrac{2x-6}{x-3}\le0\)
\(\Leftrightarrow\dfrac{10-x}{x-3}\le0\)
Lập bang xét dấu và tìm x nhé!!
a: \(Q=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\)
\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\dfrac{x\left(x-1\right)}{x+1}=\dfrac{x^2}{x-1}\)
b: |x|=1/3 thì x=1/3 hoặc x=-1/3
Khi x=1/3 thì \(Q=\left(\dfrac{1}{3}\right)^2:\left(\dfrac{1}{3}-1\right)=-\dfrac{1}{6}\)
Khi x=-1/3 thì \(Q=\left(-\dfrac{1}{3}\right)^2:\left(-\dfrac{1}{3}-1\right)=-\dfrac{1}{12}\)
c: Để Q là số nguyên thì \(x^2-1+1⋮x-1\)
=>\(x-1\in\left\{1;-1\right\}\)
=>x=2
d: Để Q=4 thì x^2=4x-4
=>x=2
minh giai phan d, nha bn :
x-a/b+c + x-b/c+a + x-c/a+b=3
=> (x-a/b+c - 1)+(x-b/a+c - 1 )+(x-c/a+b - 1) = 3-3=0
=>x-a-b-c/b+c + x-a-b-c/a+c + x-a-b-c/a+b =0
=>(x-a-b-c)(1/b+c + 1/a+c + 1/a+b )=0
Vi 1/b+c + 1/a+c + 1/a+b luon lon hon 0=>x-a-b-c=0
=>x=a+b+c
a: \(P=\dfrac{x\left(x-1\right)\left(x^2+x+1\right)}{x^2+x+1}-\dfrac{x\left(2x+1\right)}{x}+\dfrac{2\left(x-1\right)\left(x+1\right)}{x-1}\)
\(=x^2-x-2x-1+2x+2\)
\(=x^2-x+1\)
b: \(P=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\)
Dấu '=' xảy ra khi x=1/2
a)P=x2-x+1 đkxđ:x\(\ne\)0;1
b)P=x2-x+1=(x-\(\dfrac{1}{2}\))2+\(\dfrac{3}{4}\)\(\ge\)\(\dfrac{3}{4}\) xảy ra dấu = khi x=\(\dfrac{-1}{2}\)
c)Q=\(\dfrac{2x}{P}\)=\(\dfrac{2}{x-1+\dfrac{1}{x}}\)\(\in\)Z đkxđ:x\(\ne\)0
\(\Rightarrow\)2\(⋮\)x-1+\(\dfrac{1}{x}\)\(\Rightarrow\)x-1+\(\dfrac{1}{x}\)\(\in\)U(2)={-2;-1;1;2}
giải ra x\(\in\){-\(\sqrt{\dfrac{5}{4}}\)+\(\dfrac{3}{2}\);\(\sqrt{\dfrac{5}{4}}\)+\(\dfrac{3}{2}\)}
a)Ta có: \(\left(\dfrac{1}{x-2}+\dfrac{2x}{x^2-4}+\dfrac{1}{x+2}\right)\left(\dfrac{2}{x}-1\right)\)
\(=\left(\dfrac{1}{x-2}+\dfrac{2x}{\left(x-2\right)\left(x+2\right)}+\dfrac{1}{x+2}\right)\left(\dfrac{2-x}{x}\right)\)
\(=\left(\dfrac{-\left(x-2\right)}{x\left(x-2\right)}+\dfrac{-2x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}+\dfrac{2-x}{x\left(x+2\right)}\right)\)
\(=\left(-\dfrac{1}{x}+\dfrac{-2}{x+2}+\dfrac{2-x}{x\left(x+2\right)}\right)\)
\(=\left(\dfrac{-x-2-2x+2-x}{x\left(x+2\right)}\right)=\dfrac{-4}{x+2}\)
b) Ta có ĐKXĐ của A là \(x\ne\pm2\)
Lại có \(A=-\dfrac{4}{x+2}=1\)
\(\Rightarrow-4=x+2\Rightarrow x=-6\)
Vậy x=-6 thì A=1
a: \(E=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{\left(x+1\right)\left(x-1\right)+x+2-x^2}{x\left(x-1\right)}\)
\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\dfrac{x\left(x-1\right)}{x^2-1+x+2-x^2}\)
\(=\dfrac{x^2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2}{x-1}\)
c: |2x+1|=5
=>2x+1=5 hoặc 2x+1=-5
=>x=-3(nhận) hoặc x=2(nhận)
Khi x=-3 thì \(E=\dfrac{\left(-3\right)^2}{-3-1}=-\dfrac{9}{4}\)
Khi x=2 thì \(E=\dfrac{2^2}{2-1}=4\)