K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2017

\(n^2+4n+2013\) là số chính phương

Đặt \(n^2+4n+2013=t^2\left(t\in Z^+\right)\)

\(\Leftrightarrow t^2-\left(n^2+4n+4\right)=2009\)

\(\Leftrightarrow t^2-\left(n+2\right)^2=2009\)

\(\Leftrightarrow\left(t-n-2\right)\left(t+n+2\right)=2009\)

Thấy: \(t+n+2>t-n-2\forall t,n\in Z^+\)

\(\Rightarrow\left\{{}\begin{matrix}t+n+2=2009\\t-n-2=1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}t=1005\\n=1002\end{matrix}\right.\) (thỏa)

Vậy \(n=1002\) thì \(n^2+4n+2013\) là SCP

10 tháng 11 2017

Đặt n2+4n+2013=m2n2+4n+2013=m2

2009=(mn2)(m+n+2)⇔2009=(m−n−2)(m+n+2)

m,nm,n là số tự nhiên nên chia TH ra để tìm n

3 tháng 8 2023

`5.25.2.41.8`

`= 5.50.41.8`

`= 5.400.41`

`= 2000.41`

`= 82000`

3 tháng 8 2023

Đặt \(n^2+4n+2013=p^2\left(p\in Z\right)\)

\(\Rightarrow n^2+4n+4+2009=p^2\)

\(\Rightarrow\left(n+2\right)^2+2009=p^2\)

\(\Rightarrow p^2-\left(n+2\right)^2=2009\)

\(\Rightarrow\left(p+n+2\right)\left(p-n-2\right)=2009\)

mà \(p+n+2>p-n-2\left(n\in N\right)\) và 2009 là số nguyên tố

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}p+n+2=2009\\p-n-2=1\end{matrix}\right.\\\left\{{}\begin{matrix}p+n+2=-2009\\p-n-2=-1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}n=1002\\p=1005\end{matrix}\right.\)

Vậy \(n=1002\) thỏa đề bài

 

3 tháng 8 2023

\(n^2+4n+2013=\left(n^2+4n+4\right)+2009=k^2\)

\(\Leftrightarrow\left(n+2\right)^2+2009=k^2\)

\(\Rightarrow\left(k-n-2\right)\left(k+n+2\right)=2009\)

\(\Rightarrow k-n-2\) và \(k+n+2\) là ước của 2009

Ta có các TH

\(\left\{{}\begin{matrix}k-n-2=-1\\k+n+2=-2009\end{matrix}\right.\) 

Hoặc

\(\left\{{}\begin{matrix}k-n-2=-2009\\k+n+2=-1\end{matrix}\right.\)

Hoặc

\(\left\{{}\begin{matrix}k-n-2=1\\k+n+2=2009\end{matrix}\right.\)

Hoặc

\(\left\{{}\begin{matrix}k-n-2=2009\\k+n+2=1\end{matrix}\right.\)

Giải các hệ trên tìm n

 

30 tháng 1 2022

hello

11 tháng 11 2017

Đặt n^2+4n+2013 =a^2 ( a thuộc N*) => n^2+4n+4+2009=a^2 => (n+2)^2 +2009=a^2 => 2009= a^2-(n+2)^2 = (a-n-2)(a+n+2) mà a, n thuộc N, N* => a-n-2<a+n+2

(a-n-2)(a+n+2)=1.2009=7.287= 41.49

Bạn tự giải các trường hợp trên tìm được n=1002;138;2

12 tháng 11 2017

(+) a-n-2=1;a+n+2=2009

=> a+n+2-a+n+2=2009-1

=> 2n+4= 2008 => n= 1002 

Giải tương tự các trường hợp trên 

10 tháng 11 2017

\(n^2+4n+2013=a^2\)

\(\Leftrightarrow a^2-\left(n+2\right)^2=2009\)

\(\Leftrightarrow\left(a-n-2\right)\left(a+n+2\right)=41.7.7\)

Tới đây thì đơn giản rồi nhé

13 tháng 7 2018

1/ Câu hỏi của Lý Khánh Linh - Toán lớp 8 - Học toán với OnlineMath

2/

Đặt \(n^2+4n+2013=m^2\left(m\in N\right)\)

\(\Rightarrow\left(n^2+4n+4\right)+2009=m^2\)

\(\Rightarrow m^2-\left(n+2\right)^2=2009\)

\(\Rightarrow\left(m+n+2\right)\left(m-n-2\right)=2009\)

Vì \(m,n\in N\Rightarrow m+n+2;m-n-2\in N\Rightarrow m+n+2>m-n-2\)

\(\Rightarrow\hept{\begin{cases}m+n+2=2009\\m-n-2=1\end{cases}\Rightarrow\hept{\begin{cases}m+n=2007\\m-n=3\end{cases}}\Rightarrow\hept{\begin{cases}m=1005\\n=1002\end{cases}}}\)

Vậy n = 1002

13 tháng 7 2018

các bạn thay n2 ở câu 1 = n3 cho mk nhé

17 tháng 7 2016

Đặt \(A=n^2-4n+7\) .

1. Với n = 0 => A = 7 không là số chính phương (loại)

2. Với n = 1 => A = 4 là số chính phương (nhận)

3. Với n > 1 , ta xét khoảng sau : \(n^2-4n+4< n^2-4n+7< n^2\)

\(\Rightarrow\left(n-2\right)^2< A< n^2\)

Vì A là số tự nhiên nên  \(A=\left(n-1\right)^2\Leftrightarrow n^2-4n+7=n^2-2n+1\Leftrightarrow2n=6\Leftrightarrow n=3\)

Thử lại, n = 3 => A = 4 là một số chính phương.

Vậy : n = 1 và n = 3 thoả mãn đề bài .