Cho tam giác ABC nhọn, kẻ AD vuông góc vs BC( D thuộc BC) kẻ BE vuông góc AC (E thuộc AC). Gọi H là giao điểm của AD và BE. Biết rằng AH=BC. Tính số đo góc BAC
CỨU TUÔIIII VÉOOOOOO!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
EAHˆ+AHEˆ=90o;DBHˆ+BHDˆ=90o
(theo tính chất tổng hai góc nhọn trong tam giác vuông)
mà AHEˆ=BHDˆ(d.d)
nên EAHˆ=DBHˆ
Xét ΔAEH và ΔBEC ta có:
AH=BC(gt);EAHˆ=EBCˆ(cmt)
Do đó ΔAEH=ΔBEC (cạnh huyền - góc nhọn)
⇒AE=BE (cặp cạnh tương ứng)
mà AEBˆ=90o nên ΔAEB vuông cân tại E
⇒BAEˆ=45o (theo tính chất của tam giác giác vuông cân)
hay BACˆ=45o
Vậy .....
Ta có:
EAHˆ+AHEˆ=90o;DBHˆ+BHDˆ=90o
(theo tính chất tổng hai góc nhọn trong tam giác vuông)
mà AHEˆ=BHDˆ(d.d)
nên EAHˆ=DBHˆ
Xét ΔAEH và ΔBEC ta có:
AH=BC(gt);EAHˆ=EBCˆ(cmt)
Do đó ΔAEH=ΔBEC (cạnh huyền - góc nhọn)
⇒AE=BE (cặp cạnh tương ứng)
mà AEBˆ=90o nên ΔAEB vuông cân tại E
⇒BAEˆ=45o (theo tính chất của tam giác giác vuông cân)
hay BACˆ=45o
Vậy .....
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại B có BH là đường cao ứng với cạnh huyền AC, ta được:
\(AB^2=AH\cdot AC\)
\(\Leftrightarrow AB\cdot AB=AH\cdot AC\)
\(\Leftrightarrow\dfrac{AH}{AB}=\dfrac{AB}{AC}\)(1)
Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{AB}{AC}=\dfrac{BD}{DC}\)(Tính chất đường phân giác của tam giác)(2)
Từ (1) và (2) suy ra \(\dfrac{AH}{AB}=\dfrac{BD}{DC}\)(3)
Ta có: BH⊥AC(gt)
DE⊥AC(gt)
Do đó: BH//DE(Định lí 1 từ vuông góc tới song song)
Xét ΔBHC có BH//DE(cmt)
nên \(\dfrac{BD}{DC}=\dfrac{EH}{EC}\)(Định lí Ta lét)(4)
Xét ΔAHB có AF là đường phân giác ứng với cạnh BH(gt)
nên \(\dfrac{AH}{AB}=\dfrac{HF}{FB}\)(Định lí đường phân giác của tam giác)(5)
Từ (3), (4) và (5) suy ra \(\dfrac{HF}{FB}=\dfrac{HE}{EC}\)
Xét ΔHBC có
F∈HB(gt)
E∈HC(gt)
\(\dfrac{HF}{FB}=\dfrac{HE}{EC}\)(cmt)
Do đó: EF//BC(Định lí Ta lét đảo)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại B có BH là đường cao ứng với cạnh huyền AC, ta được:
AB2=AH⋅ACAB2=AH⋅AC
⇔AB⋅AB=AH⋅AC⇔AB⋅AB=AH⋅AC
⇔AHAB=ABAC⇔AHAB=ABAC(1)
Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên ABAC=BDDCABAC=BDDC(Tính chất đường phân giác của tam giác)(2)