K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có:

EAHˆ+AHEˆ=90o;DBHˆ+BHDˆ=90o

(theo tính chất tổng hai góc nhọn trong tam giác vuông)

 AHEˆ=BHDˆ(d.d)

nên EAHˆ=DBHˆ

Xét ΔAEH  ΔBEC ta có:

AH=BC(gt);EAHˆ=EBCˆ(cmt)

Do đó ΔAEH=ΔBEC (cạnh huyền - góc nhọn)

AE=BE (cặp cạnh tương ứng)

 AEBˆ=90o nên ΔAEB vuông cân tại E

BAEˆ=45o (theo tính chất của tam giác giác vuông cân)

hay BACˆ=45o

Vậy .....

Ta có:

EAHˆ+AHEˆ=90o;DBHˆ+BHDˆ=90o

(theo tính chất tổng hai góc nhọn trong tam giác vuông)

 AHEˆ=BHDˆ(d.d)

nên EAHˆ=DBHˆ

Xét ΔAEH  ΔBEC ta có:

AH=BC(gt);EAHˆ=EBCˆ(cmt)

Do đó ΔAEH=ΔBEC (cạnh huyền - góc nhọn)

AE=BE (cặp cạnh tương ứng)

 AEBˆ=90o nên ΔAEB vuông cân tại E

BAEˆ=45o (theo tính chất của tam giác giác vuông cân)

hay BACˆ=45o

Vậy .....

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )a,chứng minh rằng IA=IBb, Tính độ dài ICc, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IKBài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AEa, chứng minh rằng BE=CDb, chứng minh rằng góc ABE bằng góc ACDc, Gọi K là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )

a,chứng minh rằng IA=IB

b, Tính độ dài IC

c, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IK

Bài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AE

a, chứng minh rằng BE=CD

b, chứng minh rằng góc ABE bằng góc ACD

c, Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?

Bài 3: Cho tam giác ABC vuông ở C, có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E kẻ CK vuông góc với AB (K thuộc AB) kẻ BD vuông góc với tia AE (D thuộc tia AE)chứng minh:

a, AC=AK và AE vuông góc CK

b,KB=KA

c, EB > AC

d, ba đường AC,BD,KE cùng đi qua 1 điểm

Bài 4: Cho tam giác nhọn ABC vẽ ra phía ngoài tam giác ABC các tam giác đều ABD và ACE .Gọi M là giao điểm của DC và BE Chứng minh rằng:

a, tam giác ABE=tam giác ADC

b,góc BMC=120°

Bài 5: Cho tam giác ABC vuông ở C ,có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E,kẻ EK vuông góc với AB( K thuộc AB)kẻ BD vuông góc với AE (D thuộc AE) chứng minh

a,AK=KB

b, AD=BC

2
12 tháng 5 2019

C1 :

Hình : tự vẽ 

a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C

                                       mà CI vuông góc vs AB => CI là đường cao của tam giác ABC 

=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )

=> IA=IB (đpcm)

12 tháng 5 2019

C1 : 

b) Có IA=IB ( cm phần a ) 

mà IA+IB = AB 

      IA + IA = 12 (cm)

=> IA = \(\frac{12}{2}=6\left(cm\right)\)

Xét tam giác vuông CIA có :     CI2  +   IA2  = CA2  ( Đ/l Py-ta -go )

                                                   CI2 +  62     = 102

                                                          CI2       = 102  - 6= 64

=> CI = \(\sqrt{64}=8\left(cm\right)\)

Vậy CI ( hay IC ) = 8cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại B có BH là đường cao ứng với cạnh huyền AC, ta được: 

\(AB^2=AH\cdot AC\)

\(\Leftrightarrow AB\cdot AB=AH\cdot AC\)

\(\Leftrightarrow\dfrac{AH}{AB}=\dfrac{AB}{AC}\)(1)

Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{AB}{AC}=\dfrac{BD}{DC}\)(Tính chất đường phân giác của tam giác)(2)

Từ (1) và (2) suy ra \(\dfrac{AH}{AB}=\dfrac{BD}{DC}\)(3)

Ta có: BH⊥AC(gt)

DE⊥AC(gt)

Do đó: BH//DE(Định lí 1 từ vuông góc tới song song)

Xét ΔBHC có BH//DE(cmt)

nên \(\dfrac{BD}{DC}=\dfrac{EH}{EC}\)(Định lí Ta lét)(4)

Xét ΔAHB có AF là đường phân giác ứng với cạnh BH(gt)

nên \(\dfrac{AH}{AB}=\dfrac{HF}{FB}\)(Định lí đường phân giác của tam giác)(5)

Từ (3), (4) và (5) suy ra \(\dfrac{HF}{FB}=\dfrac{HE}{EC}\)

Xét ΔHBC có 

F∈HB(gt)

E∈HC(gt)

\(\dfrac{HF}{FB}=\dfrac{HE}{EC}\)(cmt)

Do đó: EF//BC(Định lí Ta lét đảo)

 

2 tháng 1 2021

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại B có BH là đường cao ứng với cạnh huyền AC, ta được: 

AB2=AH⋅ACAB2=AH⋅AC

⇔AB⋅AB=AH⋅AC⇔AB⋅AB=AH⋅AC

⇔AHAB=ABAC⇔AHAB=ABAC(1)

Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên ABAC=BDDCABAC=BDDC(Tính chất đường phân giác của tam giác)(2)

a: góc C=90-60=30 độ

b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

BA=BH

=>ΔBAE=ΔBHE

=>góc ABE=góc HBE

=>BE là phân giác của góc ABC

c: Xét ΔEAK vuông tại A và ΔEHC vuông tại H có

EA=EH

góc AEK=góc HEC
=>ΔEAK=ΔEHC

=>EK=EC và AK=HC

mà BA=BH

nên BK=BC

mà EK=EC

nên BE là trung trực của KC

=>BE vuong góc KC