Cho đường tròn tâm O bán kính=5cm điểm A trên đường tròn qua A kẻ tiếp tuyến Ax trên đó lấy B sao cho AB=AO
a. tính OB
b. qua A kẻ đường thẳng vuông góc với OB cắt đường tròn ở C cm: BC là tiếp tuyến đường tròn tâm O
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Tính được OB=10cm
b, Ta có ∆OBC = ∆OBA (c.g.c) => BC là tiếp tuyến của đường tròn (O)
Bạn tự vẽ hình nhé.
Xét tam giác OAC có OA=OC=6
=> Tam giác OAC cân tại O
=> Góc OAC = Góc OCA (1)
Gọi giao điểm của AC và OB là H.
Ta có AC vuông góc với OB
=> HA = HC ( Quan hệ vuông góc giữa đường kính và dây )
Xét tam giác BAH và tam giác BCH có
Góc AHB = Góc CHB = 90 độ
AH = CH
BH chung
Suy ra tam giác BAH = Tam giác BCH ( c.g.c )
=> Góc BAH = Góc BCH (2)
Cộng vế theo vế của (1) và (2) ta được Góc BCO = 90 độ
Vậy BC là tt của (O)
OB=căn18
b> Xét 2 tam giác bằng nhau đó là tam giác OAB=BCO là ra 2 góc cần xét
ta có tam giác AOC cân và OH là đường cao nên cũng là đường phân giác =>OAH=HOC
xét 2 tam giác OAB và tam giÁC BCO có OA=OB (bán kính )AOH=HOC(cmt) OB CHUNG => AOB=BCO(C-G-C)=>GÓC OAB=BCO hay OC vuông BC=>...............
AC=3
Lời giải:
a. Vì $AC$ là tiếp tuyến của $(O)$ nên $AC\perp OA$ hay $AC\perp AB$
Do đó tam giác $ABC$ vuông tại $A$
$AB=2R=12$ (cm)
$AC= 5$ (cm)
Áp dụng định lý Pitago: $BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+5^2}=13$ (cm)
b.
$\widehat{AMB}=90^0$ (góc nt chắn nửa đường tròn)
$\Rightarrow AM\perp MB$ hay $AM\perp BC$
Áp dụng hệ thức lượng trong tam giác vuông với tam giác vuông $ABC$, đường cao $AM$
$\frac{1}{AM^2}=\frac{1}{AC^2}+\frac{1}{AB^2}=\frac{1}{5^2}+\frac{1}{12^2}$
$\Rightarrow AM=\frac{60}{13}$ (cm)
Áp dụng định lý Pitago:
$MC=\sqrt{AC^2-AM^2}=\sqrt{5^2-(\frac{60}{13})^2}=\frac{25}{13}$ (cm)
$BM=BC-MC=13-\frac{25}{13}=\frac{144}{13}$ (cm)
a: Xét ΔBAO vuông tại A có \(cosAOB=\dfrac{OA}{OB}=\dfrac{1}{\sqrt{2}}\)
=>\(\widehat{AOC}=45^0\)
=>\(sđ\left(OA;OC\right)=45^0\)
b: Số đo cung AC nhỏ là:
\(sđ\stackrel\frown{AC}=45^0\)
Số đo cung AC lớn là:
3600-450=3150