cho hình chữ nhật ABCD có AB=a, BC=2a với M di động trên đường thẳng AC.Tìm M để \(\overrightarrow{|MA}-\overrightarrow{MB}+\overrightarrow{MB}+\overrightarrow{MD|}\)
nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Gọi E là điểm đối xứng D qua A
\(\Rightarrow\overrightarrow{EA}=\overrightarrow{AD}=\overrightarrow{BC}\)
\(\left|\overrightarrow{MA}+\overrightarrow{MB}-\overrightarrow{MC}\right|=\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{CM}\right|=\left|\overrightarrow{MA}+\overrightarrow{CB}\right|\)
\(=\left|\overrightarrow{ME}+\overrightarrow{EA}+\overrightarrow{CB}\right|=\left|\overrightarrow{ME}+\overrightarrow{BC}+\overrightarrow{CB}\right|=\left|\overrightarrow{ME}\right|\)
\(\Rightarrow\left|\overrightarrow{ME}\right|=\left|\overrightarrow{MD}\right|\Rightarrow ME=MD\Rightarrow M\) nằm trên trung trực của ED
Hay quỹ tích M là đường thẳng AB
b/ Gọi O là trung điểm AC (tâm hcn), H là trung điểm BC, K là trung điểm OH
Ta có: \(\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{MB}+\overrightarrow{MC}=2\overrightarrow{MO}+2\overrightarrow{MH}=4\overrightarrow{MK}\)
\(\Rightarrow P=4\left|\overrightarrow{MK}\right|=4MK\Rightarrow P_{min}=0\) khi M trùng K
\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=\overrightarrow{AB}+\overrightarrow{AD}\)
\(\Leftrightarrow\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{MO}+\overrightarrow{OC}+\overrightarrow{MO}+\overrightarrow{OD}=\overrightarrow{AC}\)
\(\Leftrightarrow4\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=2\overrightarrow{AO}\)
\(\Leftrightarrow4\overrightarrow{MO}=2\overrightarrow{OA}\)
\(\Leftrightarrow\overrightarrow{MO}=\dfrac{1}{2}\overrightarrow{AO}\)
\(\Rightarrow M\) là trung điểm OA
Gọi N là trung điểm AB
\(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MA}-\overrightarrow{MB}\right|\)
\(\Leftrightarrow2\left|\overrightarrow{MN}\right|=\left|\overrightarrow{BA}\right|\)
\(\Leftrightarrow MN=\dfrac{a^2}{2}\)
\(\Rightarrow\Delta MAB\) vuông tại M
Áp dụng BĐT AM-GM:
\(\Rightarrow MH^2=HA.HB\le\dfrac{\left(HA+HB\right)^2}{4}=\dfrac{AB^2}{4}=\dfrac{a^2}{4}\)
\(\Rightarrow MH\le\dfrac{a}{2}\)
a) \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} + \overrightarrow {MD} = 4\overrightarrow {MO} \)
\( \Leftrightarrow \overrightarrow {MO} + \overrightarrow {OA} + \overrightarrow {MO} + \overrightarrow {OB} + \overrightarrow {MO} + \overrightarrow {OC} + \overrightarrow {MO} + \overrightarrow {OD} = 4\overrightarrow {MO} \)
\( \Leftrightarrow 4\overrightarrow {MO} + \left( {\overrightarrow {OA} + \overrightarrow {OB} } \right) + \left( {\overrightarrow {OC} + \overrightarrow {OD} } \right) = 4\overrightarrow {MO} \)
\( \Leftrightarrow 4\overrightarrow {MO} + \overrightarrow 0 + \overrightarrow 0 = 4\overrightarrow {MO} \\ \Leftrightarrow 4\overrightarrow {MO} = 4\overrightarrow {MO} \) (luôn đúng)
(vì O là giao điểm 2 đường chéo nên là trung điểm của AB, CD)
b) ABCD là hình bình hành nên ta có \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \)
Suy ra \(\)\(\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} = \left( {\overrightarrow {AB} + \overrightarrow {AD} } \right) + \overrightarrow {AC} = \overrightarrow {AC} + \overrightarrow {AC} = 2\overrightarrow {AC} \) (đpcm)
Chắc đề là: \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\right|=a\) ?
\(\left|\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{MO}+\overrightarrow{OC}+\overrightarrow{MO}+\overrightarrow{OD}\right|=a\)
\(\Leftrightarrow\left|4\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}\right|=a\)
\(\Leftrightarrow4\left|\overrightarrow{MO}\right|=a\)
\(\Leftrightarrow MO=\dfrac{a}{4}\)
Tập hợp M là đường tròn tâm O bán kính \(\dfrac{a}{4}\)