K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2023

Chị ơi giúp e cái này tìm 3  giá trị của x sao cho 0,6<x<0,61

17 tháng 12 2023

Gọi I là tâm đường tròn nội tiếp tam giác ABC

\(\Rightarrow a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}=0\)

Ta có:

\(A=\left|a\overrightarrow{MA}+b\overrightarrow{MB}+c\overrightarrow{MC}\right|=\left|\left(a+b+c\right)\overrightarrow{MI}+a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}\right|\)

   \(=\left|\left(a+b+c\right)\overrightarrow{MI}\right|=\left(a+b+c\right).MI\)

\(Amin\Leftrightarrow MImin\)

           \(\Leftrightarrow\) M trùng I

NV
23 tháng 12 2022

a.

Gọi G là trọng tâm tam giác ABC \(\Rightarrow\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)

\(\Rightarrow T=\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right|\)

\(=\left|3\overrightarrow{MG}\right|=3\left|\overrightarrow{MG}\right|\)

\(\Rightarrow T_{min}\) khi và chỉ khi \(MG_{min}\Rightarrow MG=0\) hay M trùng G

Theo công thức trọng tâm: \(\left\{{}\begin{matrix}x_M=\dfrac{2-1+6}{3}=\dfrac{7}{3}\\y_M=\dfrac{3-1+0}{3}=\dfrac{2}{3}\end{matrix}\right.\) \(\Rightarrow M\left(\dfrac{7}{3};\dfrac{2}{3}\right)\)

b.

Tương tự câu a, ta có \(T=3\left|\overrightarrow{MG}\right|\) đạt min  khi MG đạt min

\(\Rightarrow\) M là hình chiếu vuông góc của G lên Ox

Mà \(G\left(\dfrac{7}{3};\dfrac{2}{3}\right)\Rightarrow M\left(\dfrac{7}{3};0\right)\)

c.

Do M thuộc Ox nên tọa độ có dạng: \(M\left(m;0\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(2-m;3\right)\\\overrightarrow{MB}=\left(-1-m;-1\right)\end{matrix}\right.\)

\(\Rightarrow\overrightarrow{u}=\left(3m+6;7\right)\)

\(\Rightarrow\left|\overrightarrow{u}\right|=\sqrt{\left(3m+6\right)^2+7^2}\ge\sqrt{0+7^2}=7\)

Dấu "=" xảy ra khi \(3m+6=0\Rightarrow m=-2\)

\(\Rightarrow M\left(-2;0\right)\)

23 tháng 12 2022

<3 em cảm ơn "giáo viên"!

25 tháng 12 2020

1.

Lấy điểm A' đối xứng với A qua Ox \(\Rightarrow A\left(-2;-1\right)\)

M có tọa độ \(M\left(x;0\right)\)

Ta có \(AM+MB=A'M+MB\ge AB=\sqrt{4^2+5^2}=\sqrt{41}\)

\(min=41\Leftrightarrow M,A',B\) thẳng hàng

\(\Leftrightarrow\overrightarrow{A'M}=k\overrightarrow{A'B}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+2=k.4\\1=k.5\end{matrix}\right.\Rightarrow x=-\dfrac{6}{5}\Rightarrow M\left(-\dfrac{6}{5};0\right)\)

25 tháng 12 2020

2.

Gọi N là trung điểm BC

\(\overrightarrow{MA}.\left(\overrightarrow{MB}+\overrightarrow{MC}\right)=0\)

\(\Leftrightarrow2\overrightarrow{MA}.\overrightarrow{MN}=0\)

\(\Leftrightarrow2MA.MN.cosAMN=0\)

\(\Leftrightarrow\left[{}\begin{matrix}MA=0\\MN=0\\cosAMN=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}M\equiv A\\M\equiv N\\\widehat{AMN}=90^o\end{matrix}\right.\)

\(\Rightarrow M\) thuộc đường tròn đường kính AN

NV
6 tháng 11 2019

Gọi \(M\left(x;0\right)\Rightarrow\overrightarrow{MA}\left(2-x;5\right)\) ; \(\overrightarrow{MB}=\left(-1-x;8\right)\); \(\overrightarrow{MC}=\left(4-x;-3\right)\)

a/ \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\left(5-3x;10\right)\)

\(\Rightarrow T=\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\sqrt{\left(5-3x\right)^2+10^2}\ge10\)

\(T_{min}=10\) khi \(5-3x=0\Rightarrow x=\frac{5}{3}\Rightarrow M\left(\frac{5}{3};0\right)\)

b/ \(2\overrightarrow{MA}-\overrightarrow{MB}+3\overrightarrow{MC}=\left(17-4x;-7\right)\)

\(\Rightarrow A=\left|2\overrightarrow{MA}-\overrightarrow{MB}+3\overrightarrow{MC}\right|=\sqrt{\left(17-4x\right)^2+\left(-7\right)^2}\ge7\)

\(A_{min}=7\) khi \(17-4x=0\Rightarrow x=\frac{17}{4}\Rightarrow M\left(\frac{17}{4};0\right)\)

8 tháng 12 2023

Gọi \(I\) là tâm tỉ cự của 3 điểm A, B, C ứng với bộ \(\left(1,4,1\right)\).

Khi đó: \(\overrightarrow{IA}+4\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{0}\). Gọi Y là trung điểm AC thì \(4\overrightarrow{IB}+2\overrightarrow{IY}=\overrightarrow{0}\)  

\(\Leftrightarrow\overrightarrow{IY}=-2\overrightarrow{IB}\)

Từ đó dễ dàng xác định được vị trí của I là điểm nằm trên cạnh BY sao cho \(IY=2IB\)

 Gọi \(J\) là tâm tỉ cự của 3 điểm A, B, C ứng với bộ \(\left(9,-6,3\right)\). Khi đó \(9\overrightarrow{JA}-6\overrightarrow{JB}+3\overrightarrow{JC}=\overrightarrow{0}\)

\(\Leftrightarrow3\left(\overrightarrow{JA}+\overrightarrow{JC}\right)+6\left(\overrightarrow{JA}-\overrightarrow{JB}\right)=\overrightarrow{0}\)

\(\Leftrightarrow6\overrightarrow{JY}+6\overrightarrow{BA}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{JY}=\overrightarrow{AB}\)

Vậy ta thấy J là điểm sao cho tứ giác ABYJ là hình hình hành.

Ta có \(\left|\overrightarrow{MA}+4\overrightarrow{MB}+\overrightarrow{MC}\right|+3\left|3\overrightarrow{MA}-2\overrightarrow{MB}+\overrightarrow{MC}\right|\)

\(=\left|\overrightarrow{MI}+\overrightarrow{IA}+4\left(\overrightarrow{MI}+\overrightarrow{IB}\right)+\overrightarrow{MI}+\overrightarrow{IC}\right|+\left|9\left(\overrightarrow{MJ}+\overrightarrow{JA}\right)-6\left(\overrightarrow{MJ}+\overrightarrow{JB}\right)+3\left(\overrightarrow{MJ}+\overrightarrow{JC}\right)\right|\)

\(=\left|6\overrightarrow{MI}\right|+\left|6\overrightarrow{MJ}\right|\)

\(=6\left(MI+MJ\right)\)

 Vậy ta cần tìm M để \(MI+MJ\) đạt GTNN. Ta thấy \(MI+MJ\ge IJ=const\). Dấu "=" xảy ra \(\Leftrightarrow\) M nằm trên đoạn thẳng IJ.

 

NV
3 tháng 10 2021

a. Xem lại đề bài, trị tuyệt đối đầu tiên 2 biểu thức MC trừ đi nhau thấy ko đúng

b. Gọi D là trung điểm AB, E là trung điểm BC

\(\Rightarrow\) DE là đường trung bình tam giác ABC

\(\Rightarrow\overrightarrow{DE}=\dfrac{1}{2}\overrightarrow{AC}\) \(\Rightarrow\overrightarrow{AC}=2\overrightarrow{DE}\)

Ta có:

\(\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{AC}\Leftrightarrow2\overrightarrow{MD}=2\overrightarrow{DE}\) (do D là trung điểm AB nên \(\overrightarrow{MA}+\overrightarrow{MB}=2\overrightarrow{MD}\))

\(\Rightarrow\overrightarrow{MD}=\overrightarrow{DE}\Rightarrow D\) là trung điểm ME

\(\Rightarrow\) M là điểm đối xứng E qua D

NV
3 tháng 10 2021

undefined

1 tháng 4 2021

Gọi G là trọng tâm tam giác ABC

\(\vec{MA}.\vec{MB}+\vec{MB}.\vec{MC}+\vec{MC}.\vec{MA}\)

\(=\dfrac{1}{2}\left(\vec{MA}+\vec{MB}+\vec{MC}\right)^2-\dfrac{1}{2}\left(MA^2+MB^2+MC^2\right)\)

\(\ge-\dfrac{1}{2}\left(MA^2+MB^2+MC^2\right)\)

\(=-\dfrac{1}{2}\left[\left(\vec{MG}+\vec{GA}\right)^2+\left(\vec{MG}+\vec{GB}\right)^2+\left(\vec{MG}+\vec{GC}\right)^2\right]\)

\(=-\dfrac{1}{2}\left[3MG^2+2\vec{MG}\left(\vec{GA}+\vec{GB}+\vec{GC}\right)+GA^2+GB^2+GC^2\right]\)

\(\ge-\dfrac{1}{2}\left(GA^2+GB^2+GC^2\right)\)

\(min=-\dfrac{1}{2}\left(GA^2+GB^2+GC^2\right)\Leftrightarrow M\equiv G\)