nếu \(\sqrt{x}\)= 2 thì \(^{x^2}\)=........
a,2 b,4 c,8 d,16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thì giá trị của x là 4,\(\sqrt{x}\)=\(\sqrt{4}\)=2
\(\sqrt{x}=2\)
mà \(x^2=\left(\sqrt{x}\right)^4\)
\(\Rightarrow\left(\sqrt{x}\right)^4=2^4\)
\(\Rightarrow\left(\sqrt{x}\right)^4=16\)hay \(x^2=16\)
vậy chọn ý D
trả lời
Nếu \(\sqrt{x}=2\)thì \(x^2\)bằng :
A) 2 ; B) 4 ; C) 8 ; D) 16 .
hc tốt
a) ĐKXĐ: \(3\le x\le10\)
b) ĐKXĐ: \(\left\{{}\begin{matrix}x>-4\\x\ne4\end{matrix}\right.\)
c) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\x\ne4\end{matrix}\right.\)
d) ĐKXĐ: \(x\ge\dfrac{1}{2}\)
e) ĐKXĐ: \(x\in R\)
a ) \(\sqrt{12-2\sqrt{11}}-\sqrt{11}=\sqrt{11}-1-\sqrt{11}=-1\)
b ) \(x-4+\sqrt{16-8x+x^2}\left(x>4\right)\)
\(=x-4+x-4=-8\)
c ) \(\sqrt{3-2\sqrt{2}}+\sqrt{3+2\sqrt{2}}=\sqrt{2}-1+\sqrt{2}+1=2\sqrt{2}\)
a,
\(\sqrt{12-2\sqrt{11}}-\sqrt{11}\\ =\sqrt{\left(\sqrt{11}-1\right)^2}-\sqrt{11}\\ =\left|\sqrt{11}-1\right|-\sqrt{11}\\ =\sqrt{11}-1-\sqrt{11}\\ =-1\)
b,
\(x-4+\sqrt{16-8x+x^2}\\ =x-4+\sqrt{\left(4-x\right)^2}\\ =x-4+\left|4-x\right|\\ =x-4+x-4\\ =2x-8\\ =2\left(x-4\right)\)
c,
\(\sqrt{3-2\sqrt{2}}+\sqrt{3+2\sqrt{2}}\\ =\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(\sqrt{2}+1\right)^2}\\ =\left|\sqrt{2}-1\right|+\left|\sqrt{2}+1\right|\\ =\sqrt{2}-1+\sqrt{2}+1\\ =2\sqrt{2}\)
d,
\(A=\dfrac{a\sqrt{a}-8+2a-4\sqrt{a}}{a-4}\\ =\dfrac{\left(a\sqrt{a}-4\sqrt{a}\right)+\left(2a-8\right)}{a-4}\\ =\dfrac{\left(a-4\right)\sqrt{a}+2\left(a-4\right)}{a-4}\\ =\dfrac{\left(a-4\right)\left(\sqrt{a}+2\right)}{\left(a-4\right)}\\ =\sqrt{a}+2\)
D nha bn