Giúp mình với: 5+5^3+5^5+5^7+....+5^101
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}=1-\dfrac{1}{101}=\dfrac{100}{101}\)
\(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{99\cdot101}\\ =1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\\ =1-\dfrac{1}{101}=\dfrac{100}{101}\)
Đặt BT trên là A
\(\frac{2}{5}.A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.100}=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{101-99}{99.101}\)
\(\frac{2}{5}.A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}=1-\frac{1}{101}=\frac{100}{101}\)
\(A=\frac{100}{101}.\frac{5}{2}=\frac{250}{101}\)
\(4\left(x+5\right)^3-7=101\\ \Rightarrow4\left(x+5\right)^3=108\\ \Rightarrow\left(x+5\right)^3=27\Rightarrow x+5=3\\ \Rightarrow x=-2\)
Đặt \(A=\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)
\(\Rightarrow A=\frac{5}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(\Rightarrow A=\frac{5}{2}\left(1-\frac{1}{101}\right)\)
\(\Rightarrow A=\frac{5}{2}.\frac{100}{101}=\frac{5.50}{101}=\frac{550}{101}\)
c: Ta có: \(\dfrac{5}{3}+\dfrac{5}{3\cdot5}+\dfrac{5}{5\cdot7}+...+\dfrac{5}{101\cdot103}\)
\(=\dfrac{5}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{101\cdot103}\right)\)
\(=\dfrac{5}{2}\left(1-\dfrac{1}{103}\right)\)
\(=\dfrac{5}{2}\cdot\dfrac{102}{103}\)
\(=\dfrac{255}{103}\)
\(A=\frac{7}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+.......+\frac{2}{99.101}\right)\)
\(=\frac{7}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+......+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{7}{2}.\left(1-\frac{1}{101}\right)\)
\(=\frac{7}{2}.\frac{100}{101}\)
\(=\frac{350}{101}\)
\(A=\frac{7}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+.....+\frac{2}{99.101}\right)\)
\(=\frac{7}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-.....+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{7}{2}.\left(1-\frac{1}{101}\right)\)
\(=\frac{7}{2}.\frac{100}{101}\)
\(=\frac{350}{101}\)
\(\frac{2}{1.2}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{99.101}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
1 - 3 + 5 - 7 + 9 - 11 + ... + 97 - 99 + 101
= ( 1 + 5 + 9 + ... + 97 + 101 ) - ( 3 + 7 + 11 + ... + 99 )
= A - B
Số số hạng của A là : ( 101 - 1 ) : 4 + 1 = 26 ( số )
Tổng A là : ( 101 + 1 ) . 26 : 2 = 1326
Số số hạng của B là : ( 99 - 3 ) : 4 + 1 = 25 ( số )
Tổng B là : ( 99 + 3 ) . 25 : 2 = 1275
=> A - B = 1326 - 1275 = 51
Vậy .....
C = 5 + 53 + 55 + ... + 5101
C . 52 = 53 + 55 + 57 + ... + 5101 + 5103
C . 52 - C = ( 53 + 55 + 57 + ... + 5101 + 5103 ) - ( 5 + 53 + 55 + ... + 5101 )
C . 24 = 5103 - 5
C = 5103 - 5 / 24
giỏi lắm đấy các bạn.
A=5+5^3+5^5+5^7+....+5^101
10A=5^3+5^5+5^7+....+5^103
10A-A=(5^3+5^5+5^7+....+5^103)-(5+5^3+5^5+5^7+....+5^101)
9A=5^103-5
A=(5^103-5):9