Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 1/3 + 2/3 + ...+ 10/3 + 11/3 = (1+2+ ...+ 11)/3= ((11.12):2)/3= 66/3 = 22
b) B = 9.(1+ 1/2 + 1/3+ ...+ 1/128 +1/256) = 9.A (Đặt biểu thức trong ngoặc =A)
A= 1+ 1/2 + 1/3+ ...+ 1/128 +1/256
2A= 2+1 + 1/2 + 1/3+ ...+ 1/128
A= 2A- A = 2- 1/256 => B= 9.(2- 1/256) = 18 - 9/256
a) \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+........+\frac{1}{99.100}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.........+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)
b) \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+..........+\frac{2}{73.75}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+.......+\frac{1}{73}-\frac{1}{75}\)
\(=\frac{1}{3}-\frac{1}{75}=\frac{8}{25}\)
c) \(\frac{4}{4.6}+\frac{4}{6.8}+\frac{4}{8.10}+..........+\frac{4}{64.66}\)
\(=2.\left(\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}+..........+\frac{2}{64.66}\right)\)
\(=2.\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+.....+\frac{1}{64}-\frac{1}{66}\right)\)
\(=2.\left(\frac{1}{4}-\frac{1}{66}\right)=2.\frac{31}{132}=\frac{31}{66}\)
d) \(\frac{9}{5.8}+\frac{9}{8.11}+\frac{9}{11.14}+........+\frac{9}{497.500}\)
\(=3.\left(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+..........+\frac{3}{497.500}\right)\)
\(=3.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+......+\frac{1}{497}-\frac{1}{500}\right)\)
\(=3.\left(\frac{1}{5}-\frac{1}{500}\right)=3.\frac{99}{500}=\frac{297}{500}\)
e) \(\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+......+\frac{1}{93.95}\)
\(=\frac{1}{2}.\left(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+........+\frac{2}{93.95}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+........+\frac{1}{93}-\frac{1}{95}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{95}\right)=\frac{1}{2}.\frac{18}{95}=\frac{9}{95}\)
g) \(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+..........+\frac{1}{200.203}\)
\(=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+........+\frac{3}{200.203}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+......+\frac{1}{200}-\frac{1}{203}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{203}\right)=\frac{1}{3}.\frac{201}{406}=\frac{67}{406}\)
Ta có 1/2*3=1/2-1/3;
1/3*4=1/3-1/4
......................(tương tự với các số khác)
1/149*150=1/149-1/150
=>A=1/2-1/3+1/3-1/4+1/4-1/5+...-1/149+1/149-1/150=1/2-1/150
A=75/150-1/150=74/150=37/75
Vậy A= 37/75
A = 2/1*5 + 2/5*9 + ... + 2/101*105
= 1/2(4/1*5 + 4/5*9 + ... + 4/101*105)
= 1/2(1 - 1/5 + 1/5 - 1/9 + ... + 1/101 - 1/105)
= 1/2(1 - 1/105)
= 1/2 * 104/105 = 52/105
Sửa câu b. Phân số thứ 2 phải là 4/5*8
B = 4/2*5 + 4/5*8 + ... + 4/47*50
= 4/3(3/2*5 + 3/5*8 + ... + 3/47*50)
= 4/3(1/2 - 1/5 + 1/5 - 1/8 + ... + 1/47 - 1/50)
= 4/3(1/2 - 1/50)
= 4/3 * 24/50 = 16/25
a)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{3}{4}+...+\frac{1}{9}-\frac{1}{10}\)
= \(1+\left(\frac{-1}{2}+\frac{1}{2}\right)+\left(\frac{-1}{3}+\frac{1}{3}\right)+...+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{10}\)
= \(1-\frac{1}{10}\)
=\(\frac{9}{10}\)
b)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
=\(1+\left(\frac{-1}{3}+\frac{1}{3}\right)+\left(\frac{-1}{5}+\frac{1}{5}\right)+\left(\frac{-1}{7}+\frac{1}{7}\right)+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{11}\)
=\(1-\frac{1}{11}\)
= \(\frac{10}{11}\)
c) đặt A=\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+\frac{3}{9.11}\)
\(\frac{1}{3}A\)=\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(\frac{2}{3}A\)=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
\(\frac{2}{3}A\)=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(\frac{2}{3}A\)=\(1+\left(\frac{-1}{3}+\frac{1}{3}\right)+\left(\frac{-1}{5}+\frac{1}{5}\right)+\left(\frac{-1}{7}+\frac{1}{7}\right)+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{11}\)
\(\frac{2}{3}A\)=\(\frac{10}{11}\)
A= \(\frac{10}{11}:\frac{2}{3}\)
A= \(\frac{10}{11}.\frac{3}{2}\)=\(\frac{15}{11}\)
d) giả tương tự câu c kết quả \(\frac{25}{11}\)
tổng đặc biệt đó bạn
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{9\times10}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(1-\frac{1}{10}=\frac{9}{10}\)
những câu sau cũng áp dụng như vậy nhé
a) 1/2 + 3/4 - (3/4 - 4 - 5)
= 1/2 + 3/4 - 3/4 + 4 + 5
= (3/4 - 3/4) + (4 + 5) + 1/2
= 0 + 9 + 1/2
= 19/2
b) [9/16 + 8/(-27)] - (19/27- 7/16 - 2)
= 9/16 - 8/27 - 19/27 + 7/16 + 2
= (9/16 + 7/16) + (-8/27 - 19/27) + 2
= 1 - 1 + 2
= 2
c) -5/8 . [4/9 + 7/(-12)]
= -5/8 . (-5/36)
= 25/288
d) 7/10 . (-3/5) + 7/10 . (-2/5) - (-3/10)
= 7/10 . (-3/5 - 2/5) + 3/10
= 7/10 . (-1) + 3/10
= -2/5
e) -3/7 . 5/9 + 4/9 . (-3/7) + 2 3/7
= -3/7 . (5/9 + 4/9) + 17/7
= -3/7 . 1 + 17/7
= 2
f) 8 2/7 - (3 4/9 + 4 2/7)
= 8 + 2/7 - 3 - 4/9 - 4 - 2/7
= (8 - 3 - 4) + (2/7 - 2/7) - 4/9
= 1 - 4/9
= 5/9
h) 3.(-1/2)² - (4/5 + 8/15) : 5/6
= 3.1/4 - 4/3 : 5/6
= 3/4 - 8/5
= -17/20
a, 13/6+5/8 : -3/4 - 7/12.4
= 13/6 + -5/6-7/3
=8/6-7/3
= -6/6
= -1
b, ( 73/5 - 21/3) + ( 4/3-43/5 )
= 73/5-21/3+4/3-43/5
=( 73/5-43/5)-(21/3-4/3)
= 6-17/3
=1/3
c, 7/5.4/9 +7/5: 9/16- 14/10.2/9
= 7/5.4/9 +7/5.16/9 - 14/45
=7/5.(4/9+16/9)-14/45
=7/5.20/9-14/45
= 140/45 - 14/45
= 126/45
Xong rùi nè! Nhưng bạn kiểm tra lại giùm nhé vì làm vào ban đêm nên hơi bất tiện
c: Ta có: \(\dfrac{5}{3}+\dfrac{5}{3\cdot5}+\dfrac{5}{5\cdot7}+...+\dfrac{5}{101\cdot103}\)
\(=\dfrac{5}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{101\cdot103}\right)\)
\(=\dfrac{5}{2}\left(1-\dfrac{1}{103}\right)\)
\(=\dfrac{5}{2}\cdot\dfrac{102}{103}\)
\(=\dfrac{255}{103}\)