Cho tam giác ABC : góc C < góc B và đường pg AD , đường cao AH ( DH thuộc BC )
CMR :
a) Góc ADC + góc ADB = góc B - góc C
b) Góc DAH = 90 độ - góc ADB và góc DAH = góc ADC = 90 độ
c) 2 góc DAH = góc ADC - góc ADB
d) Góc DAH =
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
Bài 1 :
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{4}=\frac{\widehat{C}}{5}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{3+4+5}=\frac{180^o}{12}=15\)
\(\hept{\begin{cases}\frac{\widehat{A}}{3}=15\\\frac{\widehat{B}}{4}=15\\\frac{\widehat{C}}{5}=15\end{cases}\Rightarrow\hept{\begin{cases}\widehat{A}=45^o\\\widehat{B}=60^o\\\widehat{C}=75^o\end{cases}}}\)
Vậy \(\widehat{A}=45^o;\widehat{B}=60^o;\widehat{C}=75^o\)
Bài 2 :
Áp dụng tính chất tỉ lệ thức :
\(2\widehat{A}=3\widehat{B}\Rightarrow\frac{\widehat{A}}{2}=\frac{\widehat{B}}{3};3\widehat{B}=4\widehat{C}\Rightarrow\frac{\widehat{B}}{3}=\widehat{\frac{C}{4}}\)
\(\Rightarrow\frac{\widehat{A}}{2}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{4}\)
Tiếp tục áp dụng tính chất dãy tỉ số bằng nhau rồi làm thôi, ez nhỉ ^^
(ko chắc ở câu c)
a) Xét \(\Delta\)ADC và \(\Delta\) AEB có:
^ADC = ^AEB = 90o
^A chung. (chỗ này ko chắc:v)
AB = AC (\(\Delta\) ABC cân tại A)
Do đó \(\Delta\)ADC = \(\Delta\)AEB (cạnh huyền - góc nhọn)
b) Cách 1: Chứng minh tam giác ADH = tam giác AEH như hồi lớp 7 đã học (cách này chắc ăn nhất)
Cách 2: (ko chắc lắm)
Theo đề bài H là giao điểm 2 đường cao từ đó \(AH\perp BC\). Mặt khác:
Trong tam giác cân, đường cao xuất phát từ đỉnh đồng thời là đường phân giác nên AH là đường phân giác ^A.
Hay ^BAH = ^CAH hay ^DAH = ^EAH (Vì D và E lần lượt thuộc AB và AC)
c) Từ câu a) có ngay AD = AE \(\rightarrow\Delta\)ADE cân tại A. Do đó ^ADE = \(\frac{180^o-\widehat{DAE}}{2}=\frac{180^o-\widehat{BAC}}{2}\)(1)
Mặt khác, do \(\Delta\)ABC cân tại A nên \(\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\) (2)
Từ (1) và (2) ta có ^ADE = ^ABC. Mà 2 góc này ở vị trí đồng vị nên DE // BC (3)
Do \(\Delta\)ABC cân tại A nên ^B = ^C (4)
Từ (3) và (4) ta có BDEC là hình thang cân (đpcm)