K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2017

\(P\left(x\right)=-x^2+13x-42,25+1969,75\)

\(P\left(x\right)=-\left(x^2-2\cdot6.5\cdot x+6.5^2\right)+1969,75\)

\(P\left(x\right)=-\left(x-6,5\right)^2+1969,75\le1969,75\)

Dấu \("="\) xảy ra khi \(x-6,5=0\Rightarrow x=6,5\)

Vậy MaxP=1969,75 khi x=6,5

28 tháng 3 2019

a. giá trị nhỏ nhất của B=3 khi và chỉ khi x=y=1006

4 tháng 11 2018

\(C=13x+2012-x^2\)

\(=-\left(x^2-13x+\dfrac{169}{4}\right)+\dfrac{7879}{4}\)

\(=-\left(x-\dfrac{13}{2}\right)^2+\dfrac{7879}{4}\)

Nhận xét :

\(\left(x-\dfrac{13}{2}\right)^2\ge0\)

\(\Leftrightarrow-\left(x-\dfrac{13}{2}\right)^2\le0\)

\(\Leftrightarrow-\left(x-\dfrac{13}{2}\right)+\dfrac{7879}{4}\le\dfrac{7879}{4}\)

\(\Leftrightarrow C\le\dfrac{7879}{4}\)

Dấu "=" xảy ra khi : \(\left(x-\dfrac{13}{2}\right)^2=0\Leftrightarrow x=\dfrac{13}{2}\)

Vậy...

23 tháng 2 2020

B =2012-| 3x + 3 | - ||x+3| + 2x| 

Ta có \(\hept{\begin{cases}\left|3x+3\right|\ge0\\\left|\left|x+3\right|+2x\right|\ge0\end{cases}\forall x}\)

\(\Leftrightarrow\left|3x+3\right|+\left|\left|x+3\right|+2x\right|\ge0\forall x\)

\(\Leftrightarrow-\left|3x+3\right|-\left|\left|x+3\right|+2x\right|\le0\forall x\)

\(\Leftrightarrow2012-\left|3x+3\right|-\left|\left|x+3\right|+2x\right|\le2012\forall x\)

\(\Leftrightarrow B\le2012\forall x\).

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left|3x+3\right|=0\\\left|\left|x+3\right|+2x\right|=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x+3=0\\\left|x+3\right|+2x=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x=-3\\\left|x+3\right|=-2x\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=-1\\\left|-1+3\right|=-2.\left(-1\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=-1\\2=2\end{cases}}\)

<=> x = 1

Vậy Max  = 2012 <=> x = 1

y ở đâu v bạn ~~?????

@@ Học tốt

Chiyuki Fujito

23 tháng 2 2020

                                                                  Bài giải

Ta có : \(B=2012-\left|3x+3\right|-||x+3|+2x|=2012-\text{( }\left|3x+3\right|+||x+3|+2x|\text{ ) }\)

B đạt GTLN khi \(\text{( }\left|3x+3\right|+||x+3|+2x|\text{ ) }\)đạt GTNN

Đặt \(C=\text{( }\left|3x+3\right|+||x+3|+2x|\text{ ) }\ge|3x+3+\text{ | }x+3\text{ |}+2x|\text{ }=\left|5x+3\text{ + | }x+3\text{ | }\right|\)

Dấu " = " xảy ra khi \(\hept{\begin{cases}x\ge-1\text{ hoặc }x\le-1\\x=-1\end{cases}}\)

Vậy Min C = 0 khi x = - 1

Vậy Max B = 2012 khi x = - 1

16 tháng 10 2018

\(K=-x^2+13x+2012=x^2+13x-\frac{169}{4}+\frac{8217}{4}\)

\(=\left(-x^2+13x-\frac{169}{4}\right)+\frac{8217}{4}\)

Mà \(-x^2+13x-\frac{169}{4}=2x\left(-\frac{1}{2}x+\frac{13}{2}\right)-\frac{169}{4}\le0\) ( do \(2x\left(-\frac{1}{2}x+\frac{13}{2}\right)\le\frac{169}{4}\))

Do đó \(K=\left(-x^2+13x-\frac{169}{4}\right)+\frac{8217}{4}\le\frac{8217}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow2x\left(-\frac{1}{2}x+\frac{13}{2}\right)=\frac{169}{4}\Leftrightarrow x=\frac{13}{2}\)

Vậy \(K_{max}=\frac{8217}{4}\Leftrightarrow x=\frac{13}{2}\)

28 tháng 10 2016

1) \(A=x^2-4x+1\)

\(A=x^2-4x+4-3\)

\(A=\left(x^2-4x+4\right)-3\)

\(A=\left(x-2\right)^2-3\)

Ta có: \(\left(x-2\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x-2\right)^2-3\ge-3\) với mọi x

Vậy MIinA = -3 khi x = 2

2) \(B=-x^2+13x+2012\)

\(B=-x^2+13x-\frac{169}{4}+\frac{169}{4}+2012\)

\(B=-\left(x^2-13+\frac{169}{4}\right)+\left(\frac{169}{4}+2012\right)\)

\(B=-\left(x-\frac{13}{2}\right)^2+\frac{8217}{4}\)

Ta có: \(\left(x-\frac{13}{2}\right)^2\ge0\) với mọi x

\(-\left(x-\frac{13}{2}\right)^2\le0\) với mọi x

\(\Rightarrow-\left(x-\frac{13}{2}\right)^2+\frac{8217}{4}\le\frac{8217}{4}\)

Vây \(Max\left(B\right)=\frac{8217}{4}\) khi \(x=\frac{13}{2}\)