cho hình bình hành ABCD, 2 góc A = 3 góc D. tính các góc của hình bình hành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 10:
góc A=180-130=50 độ
góc B=(180+50)/2=230/2=115 độ
góc C=180-115=65 độ
\(\widehat{A}=\widehat{C}=135^0\)
\(\widehat{B}=\widehat{D}=45^0\)
Xét Δ vuông ADC ta có :
\(AD=\dfrac{CD}{2}\)
mà AD là cạnh góc vuông, CD là cạnh huyền
⇒ Δ ADC là tam giác nửa đều
\(\Rightarrow\left\{{}\begin{matrix}\widehat{ADC}=60^O\\\widehat{DCA}=30^O\end{matrix}\right.\)
\(\Rightarrow\widehat{ADC}=\widehat{ABC}=60^O\) (hai góc đối hình bình hành) (1)
Ta lại có : \(\widehat{BAC}=\widehat{DCA}\) (so le trong)
mà \(\widehat{DCA}=30^O\)
\(\Rightarrow\widehat{BAC}=30^2\)
mà \(\widehat{DAB}=\widehat{DAC}+\widehat{BAC}\)
\(\Rightarrow\widehat{DAB}=90^o+30^o=120^o\)
\(\Rightarrow\widehat{BCD}=\widehat{DAB}=120^o\) (hai góc đối hình bình hành) (2)
(1), (2)⇒ điều phải tính toán theo đề
Ta có: \(2\widehat{A}=3\widehat{D}\Rightarrow\widehat{D}=\dfrac{2}{3}\widehat{A}\)
Xét hình bình hành ABCD có:
AB//DC
\(\Rightarrow\widehat{A}+\widehat{D}=180^0\)
\(\Rightarrow\widehat{A}+\dfrac{2}{3}\widehat{A}=180^0\Rightarrow\dfrac{5}{3}\widehat{A}=180^0\Rightarrow\widehat{A}=108^0\)
\(\Rightarrow\widehat{D}=\dfrac{2}{3}\widehat{A}=72^0\)
Ta có: Tứ giác ABCD là hình bình hành
\(\Rightarrow\left\{{}\begin{matrix}\widehat{A}=\widehat{C}=108^0\\\widehat{B}=\widehat{D}=72^0\end{matrix}\right.\)
Bài 1:
ABCD là hình bình hành
=>AD=BC(1)
E là trung điểm của AD
=>\(EA=ED=\dfrac{AD}{2}\left(2\right)\)
F là trung điểm của BC
=>\(FB=FC=\dfrac{BC}{2}\left(3\right)\)
Từ (1),(2),(3) suy ra EA=ED=FB=FC
Bài 2:
a: ABCD là hình bình hành
=>\(\widehat{A}+\widehat{B}=180^0\)
=>\(\widehat{B}=180^0-60^0=120^0\)
ABCD là hình bình hành
=>\(\widehat{A}=\widehat{C};\widehat{B}=\widehat{D}\)
\(\widehat{A}=\widehat{C}\)
mà \(\widehat{A}=60^0\)
nên \(\widehat{C}=60^0\)
\(\widehat{B}=\widehat{D}\)
mà \(\widehat{B}=120^0\)
nên \(\widehat{D}=120^0\)
b: ABCD là hình bình hành
=>\(\widehat{A}=\widehat{C}\)
mà \(\widehat{A}+\widehat{C}=140^0\)
nên \(\widehat{A}=\widehat{C}=\dfrac{140^0}{2}=70^0\)
ABCD là hình bình hành
=>\(\widehat{A}+\widehat{B}=180^0\)
=>\(\widehat{B}=180^0-70^0=110^0\)
ABCD là hình bình hành
=>\(\widehat{B}=\widehat{D}\)
mà \(\widehat{B}=110^0\)
nên \(\widehat{D}=110^0\)
c: ABCD là hình bình hành
=>\(\widehat{B}+\widehat{A}=180^0\)
mà \(\widehat{B}-\widehat{A}=40^0\)
nên \(\widehat{B}=\dfrac{180^0+40^0}{2}=110^0;\widehat{A}=\dfrac{180^0-40^0}{2}=70^0\)
ABCD là hình bình hành
=>\(\widehat{A}=\widehat{C};\widehat{B}=\widehat{D}\)
=>\(\widehat{C}=70^0;\widehat{D}=110^0\)
a: Xét ΔMEA và ΔMCB có
góc EMA=góc CMB
MA=MB
góc MEA=góc MCB
=>ΔMEA=ΔMCB
=>ME=MC
=>M là trung điểm của CE
Xét tứ giác AEBC có
M là trung điểm chung của AB và EC
=>AEBC là hbh
b: Để AEBC là hình chữ nhật thì góc EAC=90 độ
=>góc DAC=90 độ
=>góc ACD+góc D=90 độ
mà góc ACD=1/2*góc D
nên góc D=2/3*90=60 độ
=>góc B=60 độ
góc BAD=góc BCD=180-60=120 độ