K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2017

Mk chỉ làm về dạng bình phương cộng( trừ ) một số thôi ,bn lại tự đánh giá nhé !

\(C=x^2-x+1\)

\(=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(E=x^2+3x+3\)

\(=x^2+3x+\dfrac{9}{4}+\dfrac{3}{4}\)

\(=\left(x^2+3x+\dfrac{9}{4}\right)+\dfrac{3}{4}\)

\(=\left[x^2+3.x.\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2\right]+\dfrac{3}{4}\)

\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}\)

\(G=3x^2-5x+3\)

\(=x^2+x^2+x^2-2x-2x-x+1+1+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x^2-2x+1\right)+\left(x^2-2x+1\right)+\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}\)

\(=\left(x-1\right)^2+\left(x-1\right)^2+\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(K=4x^2+3x+2\)

\(=4x^2+3x+\dfrac{9}{16}+\dfrac{23}{16}\)

\(=\left(4x^2+3x+\dfrac{9}{16}\right)+\dfrac{23}{16}\)

\(=\left(2x+\dfrac{3}{4}\right)^2+\dfrac{23}{16}\)

24 tháng 8 2018

\(A=x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1>1\)(dương)

\(B=x^2+4x+6=x^2+2.x.2+2^2+2=\left(x+2\right)^2+2>2\)(dương)

\(C=x^2-x+1=x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>\frac{3}{4}\)(dương)

\(D=x^2+x+1=x^2+2x\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>\frac{3}{4}\)(dương)

\(E=x^2+3x+3=x^2+2.x.\frac{3}{2}+\frac{9}{4}+\frac{3}{4}=\left(x+\frac{3}{4}\right)^2+\frac{3}{4}>\frac{3}{4}\)(dương)

Bạn làm tương tự nhé

26 tháng 6 2019

x^2 + 2x + 2

= x^2 + 2x + 1 + 1

= (x + 1)^2 + 1 > 1

=> dương với mọi x

25 tháng 7 2019

\(A=x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\)

Vậy \(A_{min}=1\Leftrightarrow x=-1\)

25 tháng 7 2019

\(B=x^2+4x=6=x^2+4x+4+2=\left(x+2\right)^2+2\ge2>0\)

Vậy \(B_{min}=2\Leftrightarrow x=-2\)

12 tháng 7 2018

\(F=2x^2+4x+3\)

\(=2\left(x^2+2x+1\right)+1\)

\(=2\left(x+1\right)^2+1\)\(>\)\(0\)     (với mọi x)

\(G=3x^2-5x+3\)

\(=3\left(x^2-\frac{5}{3}x\right)+3\)

\(=3\left(x^2-2.\frac{5}{6}x+\frac{25}{36}\right)+\frac{11}{12}\)

\(=3\left(x-\frac{5}{6}\right)^2>0\)   với mọi x

12 tháng 7 2018

\(F=2x^2+4x+3\)

\(=2\left(x^2+2x+\frac{3}{2}\right)\)

\(=2\left(x+1\right)^2+1\ge1>0\)

vay F luon duong voi moi gt cua x

\(G=3x^2-5x+3=3\left(x^2-\frac{5}{3}x+1\right)=3\left(x^2-2x\frac{5}{6}+\frac{25}{36}+\frac{11}{36}\right)\)

\(=3\left(x-\frac{5}{6}\right)^2+\frac{11}{12}\ge\frac{11}{12}>0\)

vay......................................

neu co sai bn thong cam nha

NV
15 tháng 10 2019

\(A=3\left(x-\frac{5}{6}\right)^2+\frac{11}{12}\)

\(B=2\left(x-\frac{3}{4}\right)^2+\frac{23}{8}\)

\(C=\left(x+\frac{3}{2}\right)^2+\frac{11}{4}\)

\(D=\left(x-5\right)^2+\left(3y+1\right)^2+4\)

\(E=\left(4x+1\right)^2+\left(y-2\right)^2+1\)

\(M=-\left(x+\frac{7}{2}\right)^2-\frac{11}{4}\)

\(N=-5\left(x-\frac{3}{5}\right)^2-\frac{41}{5}\)

\(C\) đề sai ví dụ \(x=3\Rightarrow C=2>0\)

\(D=-5\left(x-\frac{7}{10}\right)^2-\frac{131}{20}\)

31 tháng 8 2021

a, \(E=4x^2+6x+5=4\left(x^2+\frac{2.3}{4}x+\frac{9}{16}-\frac{9}{16}\right)+5\)

\(=4\left(x+\frac{3}{4}\right)^2+\frac{11}{4}\ge\frac{11}{4}>0\forall x\)

Vậy ta có đpcm 

b, \(F=2x^2-3x+7=2\left(x^2-\frac{2.3}{4}x+\frac{9}{16}-\frac{9}{16}\right)+7\)

\(=2\left(x-\frac{3}{4}\right)^2+\frac{47}{8}\ge\frac{47}{8}>0\forall x\)

Vậy ta có đpcm 

c, \(K=5x^2-4x+1=5\left(x^2-\frac{2.2}{5}x+\frac{4}{25}-\frac{4}{25}\right)+1\)

\(=5\left(x-\frac{2}{5}\right)^2+\frac{1}{5}\ge\frac{1}{5}>0\forall x\)

Vậy ta có đpcm 

d, \(Q=3x^2+2x+5=3\left(x^2+\frac{2}{3}x+\frac{1}{9}-\frac{1}{9}\right)+5\)

\(=3\left(x+\frac{1}{3}\right)^2+\frac{14}{3}\ge\frac{14}{3}>0\forall x\)

Vậy ta có đpcm 

12 tháng 7 2018

\(4)D=x^2+x+1\)

\(D=x^2+2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)

\(D=\left(x+\frac{1}{2}\right)^2-\frac{1}{4}+1\)

\(D=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vậy biểu thức trên luôn nhận giá trị dương với mọi giá trị của x.

Các câu khác lm tương tự nhé.

Cho góp ý xíu: lần sau bn đưa từng câu một lên diễn đàn thì sẽ có câu trả lời nhanh hơn là đưa cùng một lúc như thế này đấy

hok tốt~

3 tháng 8 2020

\(D=x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)( đpcm )

\(F=2x^2+4x+3=2\left(x^2+2x+1\right)+1=2\left(x+1\right)^2+1\)

\(2\left(x+1\right)^2\ge0\forall x\Rightarrow2\left(x+1\right)^2+1\ge1>0\forall x\)( đpcm )

\(G=3x^2-5x+3=3\left(x^2-\frac{5}{3}x+\frac{25}{36}\right)+\frac{11}{12}=3\left(x-\frac{5}{6}\right)^2+\frac{11}{12}\)

\(3\left(x-\frac{5}{6}\right)^2\ge0\forall x\Rightarrow3\left(x-\frac{5}{6}\right)^2+\frac{11}{12}\ge\frac{11}{12}>0\forall x\)( đpcm )

\(H=4x^2+4x+2=4\left(x^2+x+\frac{1}{4}\right)+1=4\left(x+\frac{1}{2}\right)^2+1\)

\(4\left(x+\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x+\frac{1}{2}\right)^2+1\ge1>0\forall x\)( đpcm )

\(K=4x^2+3x+2=4\left(x^2+\frac{3}{4}x+\frac{9}{64}\right)+\frac{23}{16}=4\left(x+\frac{3}{8}\right)^2+\frac{23}{16}\)

\(4\left(x+\frac{3}{8}\right)^2\ge0\forall x\Rightarrow4\left(x+\frac{3}{8}\right)^2+\frac{23}{16}\ge\frac{23}{16}>0\forall x\)( đpcm )

\(L=2x^2+3x+4=2\left(x^2+\frac{3}{2}x+\frac{9}{16}\right)+\frac{23}{8}=2\left(x+\frac{3}{4}\right)^2+\frac{23}{8}\)

\(2\left(x+\frac{3}{4}\right)^2\ge0\forall x\Rightarrow2\left(x+\frac{3}{4}\right)^2+\frac{23}{8}\ge\frac{23}{8}>0\forall x\)( đpcm )

18 tháng 10 2017

\(G=3x^2-5x+3\)

\(=x^2+x^2+x^2-2x-2x-x+1+1+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x^2-2x+1\right)+\left(x^2-2x+1\right)+\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}\)

\(=\left(x-1\right)^2+\left(x-1\right)^2+\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(=2\left(x-1\right)^2+\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Ta có :

\(2\left(x-1\right)^2+\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-1\right)^2+\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)

=> Biểu thức luôn dương với mọi x

1: \(D=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

6: \(F=2\left(x^2+2x+\dfrac{3}{2}\right)=2\left(x^2+2x+1+\dfrac{1}{2}\right)\)

\(=2\left(x+1\right)^2+1>0\)

7: \(=3\left(x^2-\dfrac{5}{3}x+1\right)\)

\(=3\left(x^2-2\cdot x\cdot\dfrac{5}{6}+\dfrac{25}{36}+\dfrac{11}{36}\right)\)

\(=3\left(x-\dfrac{5}{6}\right)^2+\dfrac{11}{12}>0\)

8: \(=4x^2+4x+1+1=\left(2x+1\right)^2+1>0\)