K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2019

tgB = \(\dfrac{AD}{BD} \) ; tgC \(= \dfrac{AD}{CD} \)

\(\Leftrightarrow\) tgB . tgC = \(\dfrac{AD^2}{BD.CD} \) (1)

\(\Rightarrow\) \(\bigtriangleup{BDH} \sim \bigtriangleup{ADC}\)

\(\Rightarrow\) \(\dfrac{DH}{DC} = \dfrac{DB}{AD} \)

\(\Rightarrow\) \(DB . DC = DH . AD \) (2)

Từ (1) và (2) \(\Rightarrow\) tgB . tgC = \(\dfrac{4DH^2}{DH.AD} = \dfrac{4DH^2}{2DH^2} = 2\) (đpcm)

24 tháng 8 2019

Cái này bạn phải đăng qua môn toán nha. Bạn copy đăng qua môn toán đi rồi mình xóa câu hỏi cho đỡ loãng nhé

24 tháng 8 2019

ok xoá ik

a: O là giao điểm của 3 đường trung trực của ΔABC

=>O là tâm đường tròn ngoại tiếp ΔABC

=>AM là đường kính của (O)

Xét (O) có

ΔABM nội tiếp đường tròn

AM là đường kính

=>ΔABM vuông tại B

=>BM vuông góc AB

=>BM//CH

Xét (O) có

ΔACM nội tiếp

AM là đường kính

=>ΔAMC vuông tại C

=>AC vuông góc CM

=>CM//BH

Xét tứ giác BHCM có

BH//CM

BM//CH

=>BHCM là hình bình hành

=>BC cắt HM tại trung điểm của mỗi đường

=>I là trung điểm của HM

b: Xét ΔMAH có

O,I lần lượt là trung điểm của MA,MH

=>OI là đường trung bình

=>OI//AH và OI=1/2AH

=>AH=2OI

31 tháng 5 2023

Ta cần chứng minh H là trực tâm của tam giác ASM. Với mục đích này, ta sẽ sử dụng tính chất của hình chữ nhật.

Vì M là trung điểm BC, ta có BM = MC. Do đó, SM là đường trung trực của BC.

Vì EF ⊥ BE và CF, nên EF song song với đường BC (vì BE // CF). Do đó, S nằm trên đường trung trực của BC.

Vì H là giao điểm của AD và BE, ta có AH  ⊥ BC và BH ⊥ AC. Do đó, AH // SM và BH // SM.

Khi đó, ta suy ra được rằng tứ giác ABSH là hình chữ nhật (do có 2 cặp cạnh đối nhau là song song và bằng nhau).

Do AS là đường chéo của hình chữ nhật ABSH, nên H là trực tâm của tam giác ASM.

Vậy, H là trực tâm của tam giác ASM. 

7 tháng 9 2024

Bạn nhầm đề không vậy:), s là giao điểm cả ef và bc mà suy ra được s là trung trực của bc dc hả?:) nhân tài đất Việt đây rồi !! 🤣🤣🤣🤣🤣

7 tháng 8 2023

a) Chứng minh BH//CD và BH=CD:

Vì O là giao điểm 3 đường trung trực nên O là tâm đường tròn ngoại tiếp tam giác ABC.
Vì A>90 nên tâm đường tròn ngoại tiếp tam giác ABC nằm ngoài tam giác ABC.
Vì H là trực tâm nên AH ⊥ BC và AH cắt BC tại D.
Vì O là trung điểm AD nên OD = AO.
Vì O là tâm đường tròn ngoại tiếp tam giác ABC nên OB = OC.
Từ đó suy ra OB = OC = OD = AO.
Vậy tứ giác OBCD là tứ giác nội tiếp.
Do đó, ta có: (BHCD) => ∠BHC + ∠BDC = 180°
Mà ∠BHC + ∠BDC = 90° + 90° = 180°
Vậy BH // CD và BH = CD.

b) Chứng minh M là trung điểm HD:

Vì OM ⊥ BC và H là trực tâm nên HM // BC.
Vì HM // BC và BH // CD nên HM // CD.
Do đó, ta có: (HMD) => ∠HMD + ∠HCD = 180°
Mà ∠HMD + ∠HCD = 90° + 90° = 180°
Vậy HM // CD và HM = CD/2.
Do đó, M là trung điểm HD.

c) Chứng minh H, G, O thẳng hàng:

Gọi E, F lần lượt là trung điểm của AB, AC.
Ta có: EG // HO và EG = (2/3)HO
Do đó, ta có: H, G, O thẳng hàng.

4 tháng 8 2023

tại sao lại là "Vì H là trực tâm nên AH ⊥ BC và AH cắt BC tại D." ạ

"H là trực tâm" rồi mà

10 tháng 7 2018

đề bài câu b sai nhé

11 tháng 7 2018

là góc FDE