K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 8 2021

Lời giải:

$(ABC)\cap (SBC)=BC$

$AM\perp BC$ do $ABC$ đều 
$SA\perp BC; AM\perp BC\Rightarrow SM\perp BC$

$\Rightarrow ((SBC), (ABC))=\widehat{AMS}=30^0$

$\frac{SA}{AM}=\tan \widehat{AMS}=\tan 30^0$

$\Rightarrow AM=\frac{SA}{\tan 30^0}=\sqrt{3}a$

$BC=AM:\frac{\sqrt{3}}{2}=2a$

$S_{ABC}=\frac{AM.BC}{2}=\sqrt{3}a^2$

$V_{S.ABC}=\frac{1}{3}.SA.S_{ABC}=\frac{1}{3}.a.\sqrt{3}a^2=\frac{\sqrt{3}}{3}a^3$

20 tháng 11 2019

Chọn C

23 tháng 3 2017

Chọn C.

Phương pháp: Tính thể tích khối chóp theo công thức  V = 1 3 B h

A
Admin
Giáo viên
31 tháng 3 2016

S A B C M

 

Ta có : \(SA\perp BC\)\(AB\perp BC\) \(\Rightarrow SB\perp BC\)

Do đó : góc giữa 2 mặt phẳng (SBC) và (ABC) bằng \(\widehat{SBA}=30^0\)

\(V_{S.ABM}=\frac{1}{2}V_{S.ABC}=\frac{1}{2}SA.AB.BC\)

\(BC=AB=a;SA=AB.\tan30^0=\frac{a\sqrt{3}}{3}\)

Vậy \(V_{s.ABM}=\frac{a^3\sqrt{3}}{36}\)

 

 

28 tháng 3 2016
thi tuyen sinh, tuyen sinh, thi dai hoc, dai hoc, huong nghiep, luyen thi dai hoc, thi thu, de thi thu, thi thu dai hoc, thong tin tuyen sinh, tuyển sinh, thi thử đại học, đề thi thử, thi tuyển sinh, thi đại học, gia su, gia sư, đại học, hướng nghiệp, luyên thi đại học, thi thử, thông tin tuyển sinh 

1) Gọi H là trung điểm của AB.
ΔSAB đều → SH  AB
mà (SAB)  (ABCD) → SH (ABCD)
Vậy H là chân đường cao của khối chóp.

24 tháng 4 2017

Chọn đáp án C

Ta có

15 tháng 10 2018

Đáp án C.

22 tháng 11 2018

ĐÁP ÁN: A

28 tháng 2 2019

2 tháng 2 2019

Đáp án A