Cho hình chóp S.ABC có đáy ABC là tam giác đều M là trung điểm của BC, SA vuông (ABC) SA = a. góc [(SBC),(ABC)] =30° Tính độ dài AM, và thể tích S.ABC theo a
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
CM
23 tháng 3 2017
Chọn C.
Phương pháp: Tính thể tích khối chóp theo công thức V = 1 3 B h
A
Admin
Giáo viên
31 tháng 3 2016
Ta có : \(SA\perp BC\), \(AB\perp BC\) \(\Rightarrow SB\perp BC\)
Do đó : góc giữa 2 mặt phẳng (SBC) và (ABC) bằng \(\widehat{SBA}=30^0\)
\(V_{S.ABM}=\frac{1}{2}V_{S.ABC}=\frac{1}{2}SA.AB.BC\)
\(BC=AB=a;SA=AB.\tan30^0=\frac{a\sqrt{3}}{3}\)
Vậy \(V_{s.ABM}=\frac{a^3\sqrt{3}}{36}\)
28 tháng 3 2016
1) Gọi H là trung điểm của AB.
ΔSAB đều → SH ⊥ AB
mà (SAB) ⊥ (ABCD) → SH⊥ (ABCD)
Vậy H là chân đường cao của khối chóp.
Lời giải:
$(ABC)\cap (SBC)=BC$
$AM\perp BC$ do $ABC$ đều
$SA\perp BC; AM\perp BC\Rightarrow SM\perp BC$
$\Rightarrow ((SBC), (ABC))=\widehat{AMS}=30^0$
$\frac{SA}{AM}=\tan \widehat{AMS}=\tan 30^0$
$\Rightarrow AM=\frac{SA}{\tan 30^0}=\sqrt{3}a$
$BC=AM:\frac{\sqrt{3}}{2}=2a$
$S_{ABC}=\frac{AM.BC}{2}=\sqrt{3}a^2$
$V_{S.ABC}=\frac{1}{3}.SA.S_{ABC}=\frac{1}{3}.a.\sqrt{3}a^2=\frac{\sqrt{3}}{3}a^3$