K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A
Admin
Giáo viên
31 tháng 3 2016

S A B C M

 

Ta có : \(SA\perp BC\)\(AB\perp BC\) \(\Rightarrow SB\perp BC\)

Do đó : góc giữa 2 mặt phẳng (SBC) và (ABC) bằng \(\widehat{SBA}=30^0\)

\(V_{S.ABM}=\frac{1}{2}V_{S.ABC}=\frac{1}{2}SA.AB.BC\)

\(BC=AB=a;SA=AB.\tan30^0=\frac{a\sqrt{3}}{3}\)

Vậy \(V_{s.ABM}=\frac{a^3\sqrt{3}}{36}\)

 

 

28 tháng 3 2016
thi tuyen sinh, tuyen sinh, thi dai hoc, dai hoc, huong nghiep, luyen thi dai hoc, thi thu, de thi thu, thi thu dai hoc, thong tin tuyen sinh, tuyển sinh, thi thử đại học, đề thi thử, thi tuyển sinh, thi đại học, gia su, gia sư, đại học, hướng nghiệp, luyên thi đại học, thi thử, thông tin tuyển sinh 

1) Gọi H là trung điểm của AB.
ΔSAB đều → SH  AB
mà (SAB)  (ABCD) → SH (ABCD)
Vậy H là chân đường cao của khối chóp.

18 tháng 12 2016

a) Tính \(V_{S.ABM}\)

Tam giác ABC cân tại A , SBC cân tại S \(\Rightarrow AM\perp BC;SM\perp BC\) tại M

Vì mp(SBC) vuông góc với mặt đáy suy ra SM vuông góc với mặt đáy

Góc giữa SB và mặt đáy là góc SBM=300

\(\Rightarrow SM=BMtan.\widehat{SBM}=\frac{a}{2}.tan30^0=\frac{a}{2\sqrt{3}}\)

\(\Rightarrow V_{S.ABM}=\frac{1}{3}.SM.S_{ABM}=\frac{1}{3}.\frac{a}{2\sqrt{3}}.\frac{1}{2}.\frac{a}{2}.\frac{a\sqrt{3}}{2}=\frac{a^3}{48}\)

b) Tính k/c SB và AM

Kẻ MH vuông góc với SB tại H

Dễ dàng chứng minh MH là đoạn vuông góc chung giữa SB và AM

Vậy khảong cách giữa SB và AM bằng đoạn MH và bằng \(\frac{BM}{cos.\widehat{HBM}}=\frac{\frac{a}{2}}{cos30^0}=\frac{a}{\sqrt{3}}\)

23 tháng 4 2020

Bạn làm không đúng rồi bạn ơi

27 tháng 1 2017

Đáp án D

1 tháng 4 2016

Hai mặt phẳng (SAB) và (SAC) cùng vuông góc với (ABC) \(\Rightarrow SA\perp\left(ABC\right)\)

\(AB\perp BC\Rightarrow SB\perp BC\Rightarrow\widehat{SBA}\) là góc giữa 2 mặt phẳng (SBC) và mặt phẳng (ABC)

\(\Rightarrow\widehat{SBA}=60^o\)

\(\Rightarrow SA=AB.\tan\widehat{SBA}=2a\sqrt{3}\)

Mặt phẳng qua SM và song song với BC, cắt AC tại N

\(\Rightarrow MN||BC\) và N là trung điểm của \(AC\\ \)

\(MN=\frac{BC}{2}=a;BM=\frac{AB}{2}=a\)

Diện tích \(S_{BCNM}=\frac{\left(BC+MN\right).BM}{2}=\frac{3a^2}{2}\)

Thể tích \(V_{S.BCNM}=\frac{1}{3}S_{BCNM}.SA=a^3\sqrt{3}\)

Kẻ đường thẳng \(\Delta\) đi qua N, song song với AB

Hạ \(AD\perp\Delta\left(D\in\Delta\right)\Rightarrow AB||\left(SND\right)\)

                                 \(\Rightarrow d\left(AB;SN\right)=d\left(AB,\left(SND\right)\right)=d\left(A,\left(SND\right)\right)\)

Hạ \(AH\perp SD\left(H\in SD\right)\Rightarrow AH\perp\left(SND\right)\Rightarrow d\left(A,\left(SND\right)\right)=AH\)

Tam giác SAD vuông tại A : \(\begin{cases}AH\perp SD\\AD=MN=a\end{cases}\)

                                            \(\Rightarrow d\left(AB,SN\right)=AH=\frac{SA.AD}{\sqrt{SA^2+AD^2}}=\frac{2a\sqrt{39}}{13}\)

 

31 tháng 3 2016

1242

 

18 tháng 8 2017

7 tháng 2 2017

Chọn D

Vậy 

28 tháng 5 2019

25 tháng 10 2017

Đáp án B

 

3 tháng 5 2017