Bài 4: Cho \(\Delta\)ABC, AB=30cm, đường cao AH=24cm; đường trung tuyến AM=25cm (H nằm giữa B và M)
a, Tính BH,BC
b,cm: \(\Delta\)ABC vuông tại A
c, Từ B kẻ đường thẳng // AC cắt AH ở D
tính BD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí Pytago vào ΔBAH vuông tại H, ta được:
\(AH^2+HB^2=AB^2\)
\(\Leftrightarrow HB^2=AB^2-AH^2=30^2-24^2=324\)
hay HB=18(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC=\dfrac{AH^2}{HB}=\dfrac{24^2}{18}=32\left(cm\right)\)
Ta có: BC=HB+HC(H nằm giữa B và C)
nên BC=18+32=50(cm)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\LeftrightarrowÁC^2=BC^2-AB^2=50^2-30^2=1600\)
hay AC=40cm
Vậy: AC=40cm; CH=32cm; BC=50cm; BH=18cm
xét \(\Delta ABH\)vg tại H có
AB2 = BH2 + AH2 ( Đ/Lí py - ta - go )
302 = BH2 + 242
BH2 = 324
BH= 18 cm
xét \(\Delta\)ABC vg tại A có AH \(\perp\)BC
AB2 = BH . BC ( hệ thức về cạnh và đường cao trong tg vg )
302 = 18 . BC
BC = 50 cm
#mã mã#
Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{9}{16}\)
\(\Leftrightarrow HB=\dfrac{9}{16}\cdot HC\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC^2\cdot\dfrac{9}{16}=24^2\)
\(\Leftrightarrow HC=32\left(cm\right)\)
hay HB=18(cm)
ΔABHΔABH vuông tại H, theo định lí Py-ta-go ta có:
AB2 = AH2 + BH2
⇒⇒ BH2 = AB2 - AH2
BH2 = 252 - 242
BH2 = 49
⇒⇒ BH = 49−−√49 = 7 (cm)
ΔACHΔACH vuông tại H, theo định lí Py-ta-go ta có:
AC2 = AH2 + CH2
CH2 = AC2 - AH2
CH2 = 262 - 242
CH2 = 100
⇒⇒ CH = 100−−−√100 = 10 (cm)
Mà BC = BH + CH
⇒⇒ BC = 7 + 10 = 17 (cm)
Vậy BC = 17 (cm).
https://olm.vn/hoi-dap/detail/37669452145.html
Bạn xem ở link này nhé(mik gửi vào tin nhắn)
Chúc học tốt@@!!!!
Xét \(\Delta ABH\) có \(\widehat{AHB}=90^0\)
Theo đly Py-ta-go có:
\(AB^2=AH^2+BH^2\Rightarrow BH=\sqrt{AB^2-AH^2}=10cm\)
Làm tg tự vs \(\Delta ACH\) \(\Rightarrow CH=7cm\)
Vậy BC= BH+CH=10+7=17cm
\(Pytago:\)
\(AC^2=BC^2-AB^2\)
\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-4^2}=3\left(cm\right)\)
Áp dung HTL trong tam giác vuông ABC có :
\(AB\cdot AC=AH\cdot BC\\ \Leftrightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{3\cdot4}{5}=2.4\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-4^2=9\)
hay \(AC=\sqrt{9}=3cm\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB\cdot AC=BC\cdot AH\)
\(\Leftrightarrow AH\cdot5=3\cdot4=12\)
hay AH=2,4cm
Vậy: AH=2,4cm
AB/AC=4/3
=>HB/HC=16/9
=>HB/16=HC/9=k
=>HB=16k; HC=9k
AH^2=HB*HC
=>144k^2=24^2=576
=>k=2
=>HB=32cm; HC=18cm
AB=căn 32*50=40cm
AC=căn 18*50=30cm
a: \(AB^2=HB^2+HA^2\)
\(BM\cdot BA=BH^2\)
\(AM\cdot AB=AH^2\)
\(BH\cdot HA=HM\cdot BA\)
\(HM^2=MA\cdot MB\)
c: Áp dụng hệ thức lượng trong tam giác vuông vào ΔBHA vuông tại H có HM là đường cao ứng với cạnh huyền BA, ta được:
\(BM\cdot BA=BH^2\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔBHC vuông tại H có HN là đường cao ứng với cạnh huyền BC, ta được:
\(BN\cdot BC=BH^2\)
Xét tứ giác BNHM có
\(\widehat{NBM}=\widehat{BNH}=\widehat{BMH}=90^0\)
Do đó: BNHM là hình chữ nhật
Suy ra: BH=NM
Ta có: \(BM\cdot BA+BN\cdot BC\)
\(=BH^2+BH^2\)
\(=2\cdot NM^2\)
Bạn tự vẽ hình nha.
a) \(sinA=\dfrac{BH}{AB},cosA=\dfrac{AH}{AB},tanA=\dfrac{BH}{AH},cotA=\dfrac{AH}{BH}\\sin \widehat{ABH}=\dfrac{AH}{AB},cos\widehat{ABH}=\dfrac{BH}{AB},tan\widehat{ABH}=\dfrac{AH}{BH},cot\widehat{ABH}=\dfrac{BH}{AH}\)
b)Áp dụng định lí Py-ta-go vào tam giác BHC vuông tại H, ta được:
\(CH=\sqrt{BC^2-BH^2}=\sqrt{900-576}=18\left(cm\right)\)
Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông, ta được:
\(AC=\dfrac{BC^2}{HC}=\dfrac{900}{18}=50\left(cm\right)\)
\(AB=\dfrac{BH\cdot AC}{BC}=\dfrac{24\cdot50}{30}=40\left(cm\right)\)
\(AH=\dfrac{AB^2}{AC}=\dfrac{400}{50}=8\)(cm)
c) Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông, ta được:
BN.BC=\(BH^2\)
BM.BA=\(BH^2\)
Suy ra, BN.BC+BM.BA=2\(BH^2\)
Xét tứ giác BMHN có:
góc BMH = góc MBN = góc HNB = \(90^0\)
nên tứ giác BMHN là hình chữ nhật.
suy ra BH = MN .
Suy ra, BN.BC+BM.BA = 2.\(MN^2\)(đpcm)
Xét tam ABH có góc H = 90 độ(gt)
Theo định lí Pitago ta có:
\(BH^2=AB^2-AH^2\)
\(\Rightarrow BH^2=30^2-24^2=900-576=324\)
\(\Rightarrow BH=\sqrt{324}=18\left(cm\right)\)
Xét tam AHM có góc H = 90 độ(gt)
Theo định lí Pitago ta có
\(HM^2=AM^2-AH^2=25^2-24^2=625-576=49\)
\(HM=\sqrt{49}=7\left(cm\right)\)
Xét tam ABC có
BM=BH+HM=18+7=25(cm)
BM = MC(t/c đường trung tuyến)
=>BC=BM+MC=2BM=2*25=50(cm)
Xét tam AHC có
HC=HM+MC=7+25=32(cm)
theo định lí Pitago, ta có:
\(AC^2=AH^2+HC^2=24^2+32^2=1600\)
\(\Rightarrow AC=\sqrt{1600}=40\left(cm\right)\)
Xét tam ABC có
\(BC^2=50^2=2500\)(1)
\(AB^2+AC^2=30^2+40^2=900+1600=2500\left(2\right)\)Theo định lí Pitago đảo kết hợp (1)(2)
=>Tam ABC vuông tại A(dpcm)