\(\Delta ABC\) vuông tại A. Đường cao AH = 24cm. AB:AC = 3:4. BH, CH = ?

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{9}{16}\)

\(\Leftrightarrow HB=\dfrac{9}{16}\cdot HC\)

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC^2\cdot\dfrac{9}{16}=24^2\)

\(\Leftrightarrow HC=32\left(cm\right)\)

hay HB=18(cm)

17 tháng 6 2017

mk k bt

17 tháng 6 2017

1 / xét tam giác ABH đồng dạng  vs CAH trg hợp g-g suy ra AB/AC =BH/AH 

                                                                                <=> 3 /7 =BH /42 

                                                                                           => BH =18 cm 

2 áp dụng hệ thức lượng AH^2 =BH .CH từ bh/ch =9/16 =>CH= 16BH/9 

TA CÓ AH ^2 =16BH^2 /9 SUY RA BH =36 cm SUY RA CH = 64 cm áp dụng pita go suy ra AB ,AC hoặc hệ thức lg cũng đc

24 tháng 6 2019

X A B C H 25cm AB/AC=3/4

13 tháng 10 2017

Xét tam ABH có góc H = 90 độ(gt)

Theo định lí Pitago ta có:

\(BH^2=AB^2-AH^2\)

\(\Rightarrow BH^2=30^2-24^2=900-576=324\)

\(\Rightarrow BH=\sqrt{324}=18\left(cm\right)\)

Xét tam AHM có góc H = 90 độ(gt)

Theo định lí Pitago ta có

\(HM^2=AM^2-AH^2=25^2-24^2=625-576=49\)

\(HM=\sqrt{49}=7\left(cm\right)\)

Xét tam ABC có

BM=BH+HM=18+7=25(cm)

BM = MC(t/c đường trung tuyến)

=>BC=BM+MC=2BM=2*25=50(cm)

13 tháng 10 2017

Xét tam AHC có

HC=HM+MC=7+25=32(cm)

theo định lí Pitago, ta có:

\(AC^2=AH^2+HC^2=24^2+32^2=1600\)

\(\Rightarrow AC=\sqrt{1600}=40\left(cm\right)\)

Xét tam ABC có

\(BC^2=50^2=2500\)(1)

\(AB^2+AC^2=30^2+40^2=900+1600=2500\left(2\right)\)Theo định lí Pitago đảo kết hợp (1)(2)

=>Tam ABC vuông tại A(dpcm)

27 tháng 8 2021

undefined

Hok tốt~

27 tháng 8 2021

Theo tính chất đường phân giác:\(\frac{AB}{AC}=\frac{BD}{CD}=\frac{75}{100}=\frac{3}{4}\)

Đặt AB = 3a; AC = 4a  (a > 0)

Áp dụng định lý Pitago:

\(AB^2+AC^2=BC^2=\left(BD+CD\right)^2\)

\(\left(3a\right)^2+\left(4a\right)^2=\left(75+100\right)^2\)

⇒a=35 (cm)

Theo công thức hệ thức lượng trong tam giác vuông:

\(BH=\frac{AB^2}{BC}=\frac{\left(3A\right)^2}{BD+CD}=\frac{9\times35^2}{75\times100}=63cm\)

CH = BC − BH = 75 + 100 − 63 = 112

k cho mik  nha

20 tháng 6 2019

A B C H M

Ta có \(BC=BH+HC=9+16=25\)

Vì \(\Delta ABC\)vuông tại A có AM là trung tuyến \(\Rightarrow AM=MB=MC=\frac{BC}{2}=\frac{25}{2}\)

Ta có \(HM=MB-BH=\frac{25}{2}-9=\frac{7}{2}\)

\(sin\widehat{HAM}=\frac{HM}{MA}=\frac{7}{2}:\frac{25}{2}=\frac{7}{25}\)

\(cos\widehat{HAM}=\frac{AH}{AM}=12:\frac{25}{2}=\frac{24}{25}\)

\(tan\widehat{HAM}=\frac{HM}{HA}=\frac{7}{2}:12=\frac{7}{24}\)

\(cot\widehat{HAM}=\frac{HA}{HM}=\frac{24}{7}\)