Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Hình bạn tự vẽ ^_^}\)
\(\text{a)Ta có: }AB^2=HB.BC=1,8.5=9\)
\(\Rightarrow AB=\sqrt{9}=3\left(\text{cm}\right)\)
\(\text{Lại có: }HC=BC-BH=5-1,8=3,2\left(\text{cm}\right)\)
\(\text{và: }AH^2=BH.CH=1,8.3,2=5,76\)
\(\Rightarrow AH=\sqrt{5,76}=2,4\left(\text{cm}\right)\)
\(\text{b) vì M là trung điểm BC nên }BM=CM=\frac{BC}{2}=\frac{5}{2}=2,5\left(\text{cm}\right)\)
\(\text{Ta lại có: }AC^2=CH.BC=3,2.5=16\)
\(\Rightarrow AC=\sqrt{16}=4\left(\text{cm}\right)\)
\(\text{Xét }\Delta DMC\text{ và }\Delta BAC\text{ có:}\)
\(\widehat{DMC}=\widehat{BAC}=90^o\)
\(\widehat{C}\text{ là góc chung}\)
\(\text{ }\Rightarrow\Delta DMC\text{ đồng dạng với }\Delta BAC\)
\(\Rightarrow\frac{DM}{AB}=\frac{DC}{BC}=\frac{CM}{AC}=\frac{2,5}{4}=0,625\left(\text{Tỉ số đồng dạng}\right)\)
\(\text{Vậy }\frac{S_{DMC}}{S_{BAC}}=\left(0,625\right)^2=\frac{25}{64}\)
a, \(AB=\sqrt{BH\cdot BC}=\sqrt{1,8\cdot5}=3\)
\(AH=\sqrt{AB^2-BH^2}=\sqrt{3^2-1,8^2}=2,4\)
b, \(\frac{S_{ABC}}{S_{DMC}}=\frac{MC^2}{BC^2}=\frac{1}{4}\)
c,\(\Delta ABC~\Delta MDC\Rightarrow\frac{BC}{DC}=\frac{AC}{MC}\Rightarrow AC\cdot CD=\frac{1}{2}BC^2\)
d,Cái này bạn tự tính nhá
Mk hơi lười nên làm hơi tắt có j thông cảm mk nha
a: \(AB=\sqrt{12^2+9^2}=15\left(cm\right)\)
\(AC=\sqrt{12^2+16^2}=20\left(cm\right)\)
Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: \(HD=\dfrac{9^2}{12}=\dfrac{81}{12}=\dfrac{27}{4}\left(cm\right)\)
Câu 1:
a: \(\dfrac{AB^2}{AC^2}=\dfrac{BH\cdot CB}{CH\cdot CB}=\dfrac{BH}{CH}\)
b: \(BD\cdot CE\cdot BC\)
\(=\dfrac{BH^2}{AB}\cdot\dfrac{CH^2}{AC}\cdot BC\)
\(=AH^4\cdot\dfrac{BC}{AB\cdot AC}=\dfrac{AH^4}{AH}=AH^3\)
Xét tam ABH có góc H = 90 độ(gt)
Theo định lí Pitago ta có:
\(BH^2=AB^2-AH^2\)
\(\Rightarrow BH^2=30^2-24^2=900-576=324\)
\(\Rightarrow BH=\sqrt{324}=18\left(cm\right)\)
Xét tam AHM có góc H = 90 độ(gt)
Theo định lí Pitago ta có
\(HM^2=AM^2-AH^2=25^2-24^2=625-576=49\)
\(HM=\sqrt{49}=7\left(cm\right)\)
Xét tam ABC có
BM=BH+HM=18+7=25(cm)
BM = MC(t/c đường trung tuyến)
=>BC=BM+MC=2BM=2*25=50(cm)
Xét tam AHC có
HC=HM+MC=7+25=32(cm)
theo định lí Pitago, ta có:
\(AC^2=AH^2+HC^2=24^2+32^2=1600\)
\(\Rightarrow AC=\sqrt{1600}=40\left(cm\right)\)
Xét tam ABC có
\(BC^2=50^2=2500\)(1)
\(AB^2+AC^2=30^2+40^2=900+1600=2500\left(2\right)\)Theo định lí Pitago đảo kết hợp (1)(2)
=>Tam ABC vuông tại A(dpcm)