K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2015

x+y=2

=> (x+y)2=4

=> x2+y2+2xy = 4

Áp dụng x2+y>= 2xy   

=> x2+y2+2xy >= 4xy

Mà x2+y2+2xy = 4

=> 4>= 4xy

=> xy <= 1

27 tháng 9 2019

x+y=2

\(\Rightarrow\)x=1; x=0; x=-1; x=-2;...

y=1; y=2; y=3; y=4;...

\(\Rightarrow\)x.y= 1.1=1=1

0.2=0<1

-1.3=-3<1

-2.4=-8<1

.............

\(\Rightarrow\)Nếu x+y=2 thì x.y\(\le\)1

27 tháng 9 2019

Ta có: \(x+y=2\)

\(\Rightarrow x=2-y.\)

Có: \(x.y=\left(2-y\right).y\)

\(\Rightarrow x.y=2y-y^2\)

\(\Rightarrow x.y=-y^2+2y-1+1\)

\(\Rightarrow x.y=-\left(y-1\right)^2+1.\)

\(\left(y-1\right)^2\ge0\) \(\forall y.\)

\(\Rightarrow-\left(y-1\right)^2\le0\) \(\forall y.\)

\(\Rightarrow-\left(y-1\right)^2+1\le1\) \(\forall y.\)

\(\Rightarrow x.y\le1\left(đpcm\right).\)

Chúc bạn học tốt!

15 tháng 6 2020

Đề của bạn thiếu dấu bằng.

Ta có: 

\(xy=\frac{4xy}{4}\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)

Dấu "=" xảy ra <=> x = y = 1/2

9 tháng 10 2020

sai rồi

15 tháng 8 2020

giả sử\(\left|x.y\right|=\left|x\right|.\left|y\right|\)

 \(\Leftrightarrow\left|x.y\right|:\left|x\right|=y\)

\(\Rightarrow\left|x\right|=\left|y\right|\)

\(\Rightarrow\left|xy\right|=\left|x\right|.\left|y\right|\)

suy ra điều phải chứng minh 

15 tháng 8 2020

\(\left|x.y\right|=\left|x\right|.\left|y\right|\)

\(\Leftrightarrow\left|x.y\right|:\left|x\right|=\left|y\right|\)

\(\Leftrightarrow\left|y\right|=\left|y\right|\)

Vậy \(\left|x.y\right|=\left|x\right|.\left|y\right|\)

14 tháng 1 2018

Ta có \(\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\)\(\Rightarrow x-2\sqrt{xy}+y\ge0\)\(\Rightarrow x+y\ge2\sqrt{xy}\)

Mà x + y = 2 \(\Rightarrow\)\(2\ge2\sqrt{xy}\)\(\Rightarrow1\sqrt{xy}\le1\)\(\Rightarrow xy\le1\)

14 tháng 1 2018

 Vi 2 = 2 + 0 ; 1 + 1 .nen x.y = 2 . 0 ; 1.1 chi bang 0 hoac 1 nen x.y <= 1

9 tháng 3 2017

Ta có:

A = (x + 1)(y + 1)

=> A = xy + x + y +1

=> A = 1 + x + y + 1

=> A = 2 + x + y

Vì x > 0 ; y > 0

=>x \(\ge\)1; y\(\ge\)1

=> x + y \(\ge\)2

=> 2 + x + y \(\ge\)4

hay A \(\ge\)4