K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2023

Llklkksd

AH
Akai Haruma
Giáo viên
23 tháng 5 2021

Lời giải:

\(M=\frac{1.2.3.4.5.6.7...(2n-1)}{2.4.6...(2n-2).(n+1)(n+2)....2n}=\frac{(2n-1)!}{2.1.2.2.2.3...2(n-1).(n+1).(n+2)...2n}\)

\(=\frac{(2n-1)!}{2^{n-1}.1.2...(n-1).(n+1).(n+2)....2n}=\frac{(2n-1)!}{2^{n-1}.1.2...(n-1).n(n+1)..(2n-1).2}\)

\(=\frac{(2n-1)!}{2^{n-1}.(2n-1)!.2}=\frac{1}{2^{n-1}.2}<\frac{1}{2^{n-1}}\)

Ta có đpcm.

NV
25 tháng 3 2022

Xét \(f\left[f\left(x\right)+x\right]=\left[f\left(x\right)+x\right]^2+m\left[f\left(x\right)+x\right]+n\)

\(=\left(x^2+mx+n+x\right)^2+m\left(x^2+mx+n+x\right)+n\)

\(=\left(x^2+mx+n\right)^2+2x\left(x^2+mx+n\right)+x^2+m\left(x^2+mx+n\right)+mx+n\)

\(=\left(x^2+mx+n\right)^2+2x\left(x^2+mx+n\right)+m\left(x^2+mx+n\right)+\left(x^2+mx+n\right)\)

\(=\left(x^2+mx+n\right)\left(x^2+mx+n+2x+m+1\right)\)

\(=\left(x^2+mx+n\right)\left[\left(x+1\right)^2+m\left(x+1\right)+n\right]\)

\(=f\left(x\right).f\left(x+1\right)\)

Thay \(x=2021\)

\(\Rightarrow f\left[f\left(2021\right)+2021\right]=f\left(2021\right).f\left(2022\right)\)

Đặt \(f\left(2021\right)+2021=k\)

Do \(f\left(x\right)\) có hệ số m;n nguyên \(\Rightarrow k\) nguyên

\(\Rightarrow f\left(k\right)=f\left(2021\right).f\left(2022\right)\) với k nguyên 

Hay tồn tại số nguyên k thỏa mãn yêu cầu

6 tháng 4 2017

Vì n-1;n;n+1 là 3 số nguyên liên tiếp .

=>có 1 số chia hết cho 3.

=>(n-1)*n*(n+1) chia hết cho 3.

Vì n lẻ.

=>n-1 và n+1 chẵn.

Mà n-1 và n+1 là 2 số chẵn liên tiếp.

=>có 1 số chia hết cho 2 và 1 số chia hết cho 4.

=>(n-1)*(n+1) chia hết cho 2*4=8.

=>(n-1)*n*(n+1) chia hết cho 8(vì nEZ).

=>(n-1)*n*(n+1) chia hết cho 3 và 8.

Mà (3;8)=1.

=>(n-1)*n*(n+1) chia hết cho 3*8=24(đpcm).

k cho em nha.đây lại toán lớp 6 rùi

NV
14 tháng 6 2020

\(VT=\left(\frac{1+x}{2}\right)^n+\left(\frac{1+y}{2}\right)^n+\left(\frac{1+z}{2}\right)^n\)

\(VT\ge\left(\frac{2\sqrt{x}}{2}\right)^n+\left(\frac{2\sqrt{y}}{2}\right)^n+\left(\frac{2\sqrt{z}}{2}\right)^n\)

\(VT\ge x^{\frac{n}{2}}+y^{\frac{n}{2}}+z^{\frac{n}{2}}\ge3\sqrt[3]{\left(xyz\right)^{\frac{n}{2}}}=3\)

Dấu "=" xảy ra khi \(x=y=z=1\)

6 tháng 3 2021

\(\Rightarrow A=2^{2n}-1=4^n-1=\left(4-1\right)\left(4^{n-1}+4^{n-2}+...+4+1\right)=3\cdot\left(4^{n-1}+4^{n-2}+...+4+1\right)⋮3\forall n\in N\)

30 tháng 8 2016

Vì \(n\in Z^+\)nên\(n\left(n+1\right)\left(n+2\right)>n^3\Rightarrow\sqrt[3]{n\left(n+1\right)\left(n+2\right)}>n\)

\(\Rightarrow\sqrt[3]{n\left(n+1\right)\left(n+2\right)+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}+...+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}}>n\)(1)

Lại có:\(n^2+2n+1>n^2+2n\Rightarrow\left(n+1\right)^2>n\left(n+2\right)\Rightarrow\left(n+1\right)^3>n\left(n+1\right)\left(n+2\right)\)

\(\Rightarrow n+1>\sqrt[3]{n\left(n+1\right)\left(n+2\right)}\\ \Rightarrow\sqrt[3]{n^3+3n^2+3n+1}>\sqrt[3]{n^3+3n^2+2n}\)

\(\Rightarrow\sqrt[3]{n^3+3n^2+2n+n+1}>\sqrt[3]{n^3+3n^2+2n+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}}\)

\(\Rightarrow\sqrt[3]{\left(n+1\right)^3}>\sqrt[3]{n\left(n+1\right)\left(n+2\right)+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}}\)

Tương tự \(\Rightarrow n+1>\sqrt[3]{n\left(n+1\right)\left(n+2\right)+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}+...+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}}\)(2)

Từ (1) và (2) suy ra:

\(n< \sqrt[3]{n\left(n+1\right)\left(n+2\right)+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}+...+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}}< n+1\)

30 tháng 8 2016

\(n\in Z^+\)nên n2 < n2 + 2n < n2 + 2n + 1 <=> n2 < n(n + 2) < (n + 1)2 => n3 < n(n + 1)(n + 2) < (n + 1)3 

=>\(n< \sqrt[3]{n\left(n+1\right)\left(n+2\right)}< n+1\)

=>\(n< \sqrt[3]{n\left(n+1\right)\left(n+2\right)}< \sqrt[3]{n\left(n+1\right)\left(n+2\right)+n}\)\(< \sqrt[3]{n\left(n+1\right)\left(n+2\right)+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}}< \sqrt[3]{n\left(n+1\right)\left(n+2\right)+n+1}\)\(=\sqrt[3]{\left(n+1\right)\left(n^2+2n+1\right)}=\sqrt[3]{\left(n+1\right)\left(n+1\right)^2}=n+1\)

=>\(n< \sqrt[3]{n\left(n+1\right)\left(n+2\right)+n}\)

\(< \sqrt[3]{n\left(n+1\right)\left(n+2\right)+\sqrt[3]{n\left(n+1\right)\left(n+2\right)+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}}}< n+1\)

Tiếp tục như vậy,ta có đpcm.

8 tháng 4 2019

Với n=2 thì  \(n^n-n^2+n-1=1;\left(n-1\right)^2=1\Rightarrow n^n-n^2+n-1⋮\left(n-1\right)^2\)

Với n>2 ta có:\(A=n^n-n^2+n-1\)

\(=n^2\left(n^{n-2}-1^{n-2}\right)+\left(n-1\right)\)

\(=\left(n-1\right)\left(n^{n-3}+n^{n-4}\cdot1+....+1\right)n^2+\left(n-1\right)\)

\(=\left(n-1\right)\left(n^{n-1}+n^{n-2}+....+n^2+1\right)\)

Xét  \(B=n^{n-1}+n^{n-2}+....+n^2+1\) có  \(n-1\) số hạng nên ta có thể viết lại như sau:
\(B=\left(n^{n-1}-1^{n-1}\right)+\left(n^{n-2}-1^{n-2}\right)+......+\left(1-1\right)+\left(n-1\right)\)

Dễ thấy mọi hạng tử của B đều chia hết cho n-1

\(\Rightarrow A=\left(n-1\right)B\Rightarrow A⋮\left(n-1\right)^2\left(đpcm\right)\)