K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2017

a) \(x^2-20x+101\)

\(=-\left(x^2+20x-101\right)\)

\(=-\left[\left(x^2+2x.10-10^2\right)+1\right]\)

\(=\left[\left(x-10\right)^2+1\right]\)

\(=-\left(x-10\right)^2-1\)

Nhận xét : \(-\left(x-10\right)^2\le0\)với mọi x

\(\Leftrightarrow-\left(x-10\right)^2-1\le-1\) với mọi x

Vậy GTLN của biểu thức là -1 đạt được khi :

(x-10)2 = 0

=> (x-10) =0

=> x = 0 + 10

=> x = 10

~Chắc vậy~

9 tháng 10 2017

b/ \(4x^2+4x+2\)

= \(\left[\left(2x\right)^2+2.2x.1+1^2\right]+1\)

= \(\left(2x+1\right)^2+1\) \(\ge1\forall x\in R\)

Dấu '' = '' xảy ra <=> \(\left(2x+1\right)^2=0\) => \(x=\dfrac{-1}{2}\)

Vậy MaxB = 1 <=> \(x=\dfrac{-1}{2}\)

Bài 1:

a: \(M=x^2+4x+4+5=\left(x+2\right)^2+5>=5\)

Dấu '=' xảy ra khi x=-2

b: \(N=x^2-20x+101=x^2-20x+100+1=\left(x-10\right)^2+1>=1\)

Dấu '=' xảy ra khi x=10

15 tháng 8 2018

a) \(A=x^2-2.10x+100+1\)

\(A=\left(x-10\right)^2+1>=1\)với mọi x

Dấu = xảy ra khi x-10 =0

                           =>x=10

Min A=1 khi x=10

b) Câu b bạn viết sai đề rồi B= -x^2 +4x -3  mới làm dc

15 tháng 8 2018

a)A= \(\left(x^2-2.x.10+100\right)+1\)

=\(\left(x-10\right)^2+1>=1\)

Dấu "=" xảy ra <=> \(\left(x-10\right)^2=0\)<=> \(x-10=0\)<=>\(x=10\)

Vậy MinA = 1 khi x=10

1 tháng 2 2020

\(A=25x^2-20x+7\)

\(\Leftrightarrow A=\left(5x-2\right)^2+3\ge3\)

Dấu " = " xảy ra \(\Leftrightarrow5x-2=0\Leftrightarrow x=\frac{2}{5}\)

Vậy \(minA=3\Leftrightarrow x=\frac{2}{5}\)

\(B=-x^2+2x-2\)

\(\Leftrightarrow B=-\left(x^2-2x+1\right)-3\)

\(\Leftrightarrow B=-\left(x-1\right)^2-3\le-3\)

Dấu " = " xảy ra \(\Leftrightarrow x=1\)

Vậy \(maxB=-3\Leftrightarrow x=1\)

\(C=9x^2-12x\)

\(\Leftrightarrow C=\left(9x^2-12x+4\right)-4\)

\(\Leftrightarrow C=\left(3x-2\right)^2-4\ge-4\)

Dấu " = " xảy ra \(\Leftrightarrow3x-2=0\Leftrightarrow x=\frac{2}{3}\)

Vậy \(minC=-4\Leftrightarrow x=\frac{2}{3}\)

\(D=3-10x^2-4xy-4y^2\)

\(\Leftrightarrow D=-\left(4y^2+4xy+x^2+9x^2\right)-3\)

\(\Leftrightarrow D=-\left[\left(2y-x\right)^2+3x^2\right]-3\le-3\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}2y-x=0\\3x^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=0\\x=0\end{cases}}\)

Vậy \(maxD=-3\Leftrightarrow x=y=0\)

\(E=4x-x^2+1\)

\(\Leftrightarrow E=-\left(x^2-4x+4\right)+5\)

\(\Leftrightarrow E=-\left(x-2\right)^2+5\le5\)

Dấu " = " xảy ra \(\Leftrightarrow x=2\)

Vậy \(maxE=5\Leftrightarrow x=2\)

Bài 2:

a: ĐKXĐ: \(x\notin\left\{0;2;-2;3\right\}\)\(A=\left(\dfrac{-\left(x+2\right)}{x-2}-\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{x+2}\right):\dfrac{x\left(x-3\right)}{x^2\left(2-x\right)}\)

\(=\dfrac{-x^2-4x-4-4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-x\left(x-2\right)}{x-3}\)

\(=\dfrac{-4x^2-8x}{\left(x+2\right)}\cdot\dfrac{-x}{x-3}\)

\(=\dfrac{-4x\left(x+2\right)}{x+2}\cdot\dfrac{-x}{x-3}=\dfrac{4x^2}{x-3}\)

b: Để A>0 thì x-3>0

hay x>3

 

2 tháng 1 2018

\(A=-\dfrac{4}{x^2-4x+10}\\ =-\dfrac{4}{\left(x^2-2.x.2+4+6\right)}\\ =-\dfrac{4}{\left(x-2\right)^2+6}\)

\(\left(x-2\right)^2\ge0\\ \Rightarrow\left(x-2\right)^2+6\ge6\\ \Rightarrow\dfrac{4}{\left(x-2\right)^2+6}\le\dfrac{2}{3}\\ \Rightarrow A=-\dfrac{4}{\left(x-2\right)^2+6}\ge-\dfrac{2}{3}\)

Min A=-2/3 khi x=2

3 tháng 1 2018

\(C=\dfrac{2}{x^2+4x+5}=\dfrac{2}{\left(x+2\right)^2+1}\)

\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+1\ge1\)

\(\Rightarrow C\le2\)

Dấu ''='' xảy ra \(\Leftrightarrow x=-2\)

Vậy Min C = 2 kjhi x = -2

9 tháng 7 2016

a) \(-x^2+6x+1=-\left(x^2-6x+9\right)+10=-\left(x-3\right)^2+10\le10\)

Vậy Max = 10 <=> x = 3

b) \(-5x^2-4x+1=-5\left(x^2+2.x.\frac{2}{5}+\frac{4}{25}\right)+\frac{4}{5}+1=-5\left(x+\frac{2}{5}\right)^2+\frac{9}{5}\le\frac{9}{5}\)

Vậy Max = \(\frac{9}{5}\Leftrightarrow x=-\frac{2}{5}\)

23 tháng 8 2019

a,A=\(-5x^2+10x-7=-2-5\left(x^2-2x+1\right)=-2-5\left(x-1\right)^2\)

\(-5\left(x-1\right)^2\le0\) với mọi x

<=> \(-2-5\left(x-1\right)^2\le-2\) vs mọi x

<=> \(A\le-2\)

Dấu "=" xảy ra <=> x=1

Vậy maxA=-2 <=> x=1

b,B=\(-5x^2-4x+1=1+\frac{4}{5}-5\left(x^2+2.\frac{4}{10}x+\frac{4}{25}\right)\)

=1+\(\frac{4}{5}-5\left(x+\frac{4}{10}\right)^2\)

\(-5\left(x+\frac{4}{10}\right)^2\le0\) vs mọi x

<=> \(1+\frac{4}{5}-5\left(x+\frac{4}{10}\right)^2\le1+\frac{4}{5}\)

<=> B\(\le1+\frac{4}{5}\)

Dấu "=" xảy ra<=> x=-\(\frac{4}{10}=-\frac{2}{5}\)

Vậy maxB=\(\frac{9}{5}\) <=>x \(=-\frac{2}{3}\)

c,C=\(\frac{3}{4x^2-4x+5}=\frac{3}{\left(2x-1\right)^2+4}\)

\(\left(2x-1\right)^2+4\ge4\) vs mọi x

<=> \(\frac{3}{\left(2x-1\right)^2+4}\le\frac{3}{4}\) vs mọi x

<=> \(C\le\frac{3}{4}\)

Dấu "=" xảy ra<=> x=\(\frac{1}{2}\)

Vậy maxC=\(\frac{3}{4}\) <=> \(x=\frac{1}{2}\)

10 tháng 5 2017

Ta có x+y=4 => x= 4-y

Thay x=4-y vào biểu thức đã cho, có: [(4-y)-2]y +2017 = (2-y)y+2017 = 2y-y^2+2017 = -(y^2-2y+1)+2018 = 

-(y-1)^2 + 2018( nếu bn ko hiểu chỗ này bn có thể hỏi lại) 

Để -(y-1)^2 + 2018 lớn nhất thì -(y-1)^2 phải lớn nhất => -(y-1)^2 = 0 => -(y-1)^2 + 2018 = 2018 

Vậy GTLN của biểu thức......... là 2018 khi y = 1 và x= 3 

10 tháng 5 2017
Ta có (x-2)y+2017=0 xy-2y+2017=0 xy-2y=-2017 Mk chỉ lm đc tới đây thôi có gì mk giải tiếp nhé. Xin lỗi bn nhiều! Bạn có thể cho mk bk acc facebook đc k mk sẽ add lm quen nha
19 tháng 3 2017

2/ x+y=2 => y=2-x

\(\Rightarrow A=3x^2+y^2=3x^2+\left(2-x\right)^2=3x^2+4-4x+x^2=4x^2-4x+4\)

\(=\left(2x\right)^2-2.2x.1+1^2+3=\left(2x-1\right)^2+3\ge3\)

=>Amin=3 <=> (2x-1)2=0 <=> 2x-1=0 <=> 2x=1 <=> x=1/2 <=> y=3/2

19 tháng 3 2017

1/ Với x=0 thì \(A=\frac{4x^2}{x^4+1}=0\)

Với \(x\ne0\) thì \(x^4+1\ge2x^2>0\) nên \(A=\frac{4x^2}{x^4+1}\le\frac{4x^2}{2x^2}=2\)

Vậy Amax=2 khi \(x^4+1=2x^2\Leftrightarrow\left(x^2-1\right)^2=0\Leftrightarrow x^2-1=0\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)

<=> x=1 hoặc x=1