K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2017

\(x^4-2x+\dfrac{1}{2}=0\)

\(\Leftrightarrow4x^4-8x+2=0\)

\(\Leftrightarrow\left(4x^4+8x^2+4\right)-\left(8x^2+8x+2\right)=0\)

\(\Leftrightarrow4\left(x^2+1\right)^2-\left(2\sqrt{2}x+\sqrt{2}\right)^2=0\)

\(\Leftrightarrow\left(2x^2-2\sqrt{2}x+2-\sqrt{2}\right)\left(2x^2+2\sqrt{2}x+2+\sqrt{2}\right)=0\)

\(\Leftrightarrow2x^2-2\sqrt{2}x+2-\sqrt{2}=0\)

\(2x^2+2\sqrt{2}x+2+\sqrt{2}\ge1+\sqrt{2}>0\)

\(\Delta=\left(-2\sqrt{2}\right)^2-4\times2\times\left(2-\sqrt{2}\right)=-8+8\sqrt{2}>0\)

Suy ra pt có hai no phân biệt:

\(x_1=\dfrac{-\left(-2\sqrt{2}\right)+\sqrt{-8+8\sqrt{2}}}{2\times2}=\dfrac{\sqrt{2}+\sqrt{-2+2\sqrt{2}}}{2}\)

\(x_1=\dfrac{-\left(-2\sqrt{2}\right)-\sqrt{-8+8\sqrt{2}}}{2\times2}=\dfrac{\sqrt{2}-\sqrt{-2+2\sqrt{2}}}{2}\)

Vậy \(S=\left\{\dfrac{\sqrt{2}-\sqrt{-2+2\sqrt{2}}}{2};\dfrac{\sqrt{2}+\sqrt{-2+2\sqrt{2}}}{2}\right\}\)

2 tháng 7 2018

\(\sqrt{\dfrac{x^2-2x+1}{x^2-6x+9}}=0\) ( x # 3 )

\(\sqrt{\dfrac{\left(x-1\right)^2}{\left(x-3\right)^2}}=0\)

\(x=1\left(TM\right)\)

Vậy ,...

AH
Akai Haruma
Giáo viên
28 tháng 4 2023

Lời giải:

ĐKXĐ:.......

$PT\Leftrightarrow \frac{4}{x}-x=\sqrt{2x-\frac{5}{x}}-\sqrt{x-\frac{1}{x}}$

$\Leftrightarrow \frac{4}{x}-x = \frac{(2x-\frac{5}{x})-(x-\frac{1}{x})}{\sqrt{2x-\frac{5}{x}}+\sqrt{x-\frac{1}{x}}}$

$\Leftrightarrow \frac{4}{x}-x = \frac{x-\frac{4}{x}}{\sqrt{2x-\frac{5}{x}}+\sqrt{x-\frac{1}{x}}}$

$\Leftrightarrow (\frac{4}{x}-x)\left[1+\frac{1}{\sqrt{2x-\frac{5}{x}}+\sqrt{x-\frac{1}{x}}}\right]=0$

Hiển nhiên biểu thức trong ngoặc vuông luôn dương nên $\frac{4}{x}-x=0$

$\Rightarrow 4-x^2=0$

$\Leftrightarrow x=\pm 2$

Thử lại thấy $x=2$ thỏa mãn. 

Vậy.......

\(\Leftrightarrow x-\dfrac{4}{x}=\sqrt{x-\dfrac{1}{x}}-\sqrt{2x-\dfrac{5}{x}}\)

\(x-\dfrac{4}{x}=\dfrac{\dfrac{4}{x}-x}{\sqrt{x-\dfrac{1}{x}}+\sqrt{2x-\dfrac{5}{x}}}\)

x-4/x>0

=>4/x-x<0

=>Loại

x-4/x<0

=>4/x-x>0

=>Mâu thuẫn

=>Loại

Do đó, chỉ có 1 trường hợp là x-4/x=0

=>x=2

AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Lời giải:ĐK: $\cos 3x>\frac{-1}{2}$

PT $\Rightarrow 4\sin ^2\frac{x}{2}-\sqrt{3}\cos 2x-1-2\cos ^2(x-\frac{3\pi}{4})=0$

$\Leftrightarrow 2(1-\cos x)-\sqrt{3}\cos 2x-2+[1-2\cos ^2(x-\frac{3\pi}{4})]=0$

$\Leftrightarrow -2\cos x-\sqrt{3}\cos 2x-cos (2x-\frac{3\pi}{2})=0$

$\Leftrightarrow 2\cos x+\sqrt{3}\cos 2x+\cos (2x-\frac{3\pi}{2})=0$

$\Leftrightarrow 2\cos x+\sqrt{3}\cos 2x+\sin 2x=0$

$\Leftrightarrow \cos x+\frac{\sqrt{3}}{2}\cos 2x+\frac{1}{2}\sin 2x=0$

$\Leftrightarrow \cos x-\cos (2x+\frac{5\pi}{6})=0

$\Leftrightarrow \cos x=\cos (2x+\frac{5\pi}{6})$

$\Rightarrow x+2k\pi =2x+\frac{5}{6}\pi$ hoặc $-x+2k\pi =2x+\frac{5}{6}\pi$

Vậy......

11 tháng 4 2016

Bạn tự phân tích đa thức thành nhân tử nhé! 

\(1.\)

\(2x^3+x+3=0\)

\(\Leftrightarrow\)  \(\left(x+1\right)\left(2x^2-2x+3\right)=0\)  \(\left(1\right)\)

Vì  \(2x^2-2x+3=2\left(x^2-x+1\right)+1=2\left(x-\frac{1}{2}\right)^2+\frac{1}{2}>0\)  với mọi  \(x\in R\)

nên từ  \(\left(1\right)\)  \(\Rightarrow\)  \(x+1=0\)  \(\Leftrightarrow\)  \(x=-1\)

11 tháng 4 2016

1)2x^3+x+3=0=>

10 tháng 5 2022

=)) sẽ chỉ có 1 người trl:vv

10 tháng 5 2022

Sao bíc :)?

\(ĐKXĐ:x\ne0,x-\dfrac{1}{x}\ge0\)

Chia cả hai vế của phương trình đầu cho \(x\ne0\) ta có :

\(x+2\sqrt{x-\dfrac{1}{x}}=3+\dfrac{1}{x}\)

\(\Leftrightarrow x-\dfrac{1}{x}+2\sqrt{x-\dfrac{1}{x}}-3=0\)

Đặt \(\sqrt{x-\dfrac{1}{x}}=a\left(a\ge0\right)\)

Khi đó pt có dạng : \(a^2+2a-3=0\Leftrightarrow\left(a+3\right)\left(a-1\right)=0\)

\(\Leftrightarrow a=1\) ( do \(a\ge0\) )

\(\Rightarrow\sqrt{x-\dfrac{1}{x}}=1\Rightarrow x-\dfrac{1}{x}=1\)

\(\Leftrightarrow x=\dfrac{1\pm\sqrt{5}}{2}\) ( thỏa mãn ĐKXĐ )

25 tháng 3 2023

\(\dfrac{x}{2}\left(4x-3\right)+2\left(3-x\right)\left(x+4\right)\le0\)

\(\Leftrightarrow\dfrac{4x^2}{2}-\dfrac{3x}{2}+2\left(3x+12-x^2-4x\right)\le0\)

\(\Leftrightarrow\dfrac{4x^2-3x}{2}+6x+24-2x^2-8x\le0\)

\(\Leftrightarrow\dfrac{4x^2-3x+2\left(6x+24-2x^2-8x\right)}{2}\le0\)

\(\Leftrightarrow4x^2-3x+12x+48-4x^2-16x\le0\)

\(\Leftrightarrow-7x\le-48\)

\(\Leftrightarrow x\ge\dfrac{48}{7}\)

25 tháng 3 2023

=>-7x+48≤0

<=>-7x≤-48

<=>(-7x)(-1)≥(-48)(-1)

<=>\(\dfrac{7x}{7}\)\(\dfrac{48}{7}\)

<=>x≥\(\dfrac{48}{7}\)