tìm x trong các tỉ lệ thức sau
a) \(\dfrac{x-3}{x+5}=\dfrac{5}{7}\)
b) \(\dfrac{x+4}{20}=\dfrac{5}{x+4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\begin{array}{l}a)\dfrac{x}{6} = \dfrac{{ - 3}}{4}\\x = \dfrac{{( - 3).6}}{4}\\x = \dfrac{{ - 9}}{2}\end{array}\)
Vậy \(x = \dfrac{{ - 9}}{2}\)
\(\begin{array}{l}b)\dfrac{5}{x} = \dfrac{{15}}{{ - 20}}\\x = \dfrac{{5.( - 20)}}{{15}}\\x = \dfrac{{ - 20}}{3}\end{array}\)
Vậy \(x = \dfrac{{ - 20}}{3}\)
Bài 1:
Ta có: \(3x=2y\)
nên \(\dfrac{x}{2}=\dfrac{y}{3}\)
mà x+y=-15
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)
Vậy: (x,y)=(-6;-9)
Bài 2:
a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
mà x+y-z=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)
Vậy: (x,y,z)=(40;30;50)
Cái này bạn áp dụng tính chất 1 của tỉ lệ thức là ra ngay mà!
Hai tỉ số bằng nhau khi tích 2 ngoại tỉ bằng tích 2 trung tỉ.
Bài 2: a) \(\dfrac{x-3}{x+5}=\dfrac{5}{7}\)
\(\Leftrightarrow\left(x-3\right).7=\left(x+5\right).5\)
\(\Leftrightarrow7x-21=5x+25\)
\(\Leftrightarrow7x-5x=21+25\)
\(\Leftrightarrow2x=46\)
\(\Rightarrow x=46:2=23\)
b) \(\dfrac{7}{x-1}=\dfrac{x+1}{9}\)
\(\Leftrightarrow\left(x+1\right)\left(x-1\right)=63\)
\(\Leftrightarrow x^2-1=63\)
\(\Leftrightarrow x^2=64\)
\(\Rightarrow x^2=\left(\pm8\right)^2\)
\(\Rightarrow x=8\) hoặc \(x=-8\)
2)a) \(\dfrac{x-3}{x+5}=\dfrac{5}{7}\)
\(\Leftrightarrow7\left(x-3\right)=5\left(x+5\right)\)
\(7x-21=5x+25\)
\(7x-5x+25=21\)
\(2x+25=21\)
\(2x=-4\Rightarrow x=-2\)
b) \(\dfrac{7}{x-1}=\dfrac{x+1}{9}\)
\(7.9=\left(x+1\right)\left(x-1\right)\)
\(63=x\left(x-1\right)+1\left(x-1\right)\)
\(63=x^2-x+x-1\)
\(x^2=63+1=64\)
\(x=\left\{\pm8\right\}\)
c) \(\dfrac{x+4}{20}=\dfrac{2}{x+4}\)
\(\Leftrightarrow\left(x+4\right)\left(x+4\right)=2.20=40\)
\(x\left(x+4\right)+4\left(x+4\right)=40\)
\(x^2+4x+4x+16=40\)
\(x^2+8x=40-16=24\)
\(x\left(x+8\right)=24\)
\(x\in\left\{\varnothing\right\}\)
d) \(\dfrac{x-1}{x+2}=\dfrac{x-2}{x+3}\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)=\left(x-1\right)\left(x+3\right)\)
\(x\left(x-2\right)+2\left(x-2\right)=x\left(x+3\right)-1\left(x+3\right)\)
\(x^2-2x+2x-4=x^2+3x-x-3\)
\(\)\(x^2-4=x^2+2x-3\)
\(\Leftrightarrow x^2-x^2-2x+3=4\)
\(-2x+3=4\)
\(-2x=1\)
\(x=-\dfrac{1}{2}\)
2.
a) \(\dfrac{x-1}{4}=\dfrac{9}{x-1}\)
\(\Leftrightarrow\left(x-1\right)^2=9.4\)
\(\Leftrightarrow\left(x-1\right)^2=36\)
\(\Leftrightarrow\left(x-1\right)^2=\left[{}\begin{matrix}6^2\\-6^2\end{matrix}\right.\)
\(\Leftrightarrow x-1=\left[{}\begin{matrix}6\\-6\end{matrix}\right.\)
\(\Leftrightarrow x=\left[{}\begin{matrix}7\\-5\end{matrix}\right.\)
1. a. \(\dfrac{3}{-1}=\dfrac{-15}{5}\); \(\dfrac{-1}{3}=\dfrac{5}{-15}\)
\(\dfrac{3}{-15}\)= \(\dfrac{5}{-1}\); \(\dfrac{-15}{3}=\dfrac{-1}{5}\)
b. \(\dfrac{4}{-3}=\dfrac{-12}{9};\dfrac{-3}{4}=\dfrac{9}{-12}\)
\(\dfrac{4}{-12}=\dfrac{9}{-3};\dfrac{-12}{4}=\dfrac{-3}{9}\)
c. \(\dfrac{3}{7}=\dfrac{c}{b};\dfrac{7}{3}=\dfrac{b}{c}\)
\(\dfrac{3}{c}=\dfrac{b}{7};\dfrac{c}{3}=\dfrac{7}{b}\)
d. \(\dfrac{a}{b}=\dfrac{y}{x};\dfrac{b}{a}=\dfrac{x}{y}\)
\(\dfrac{a}{y}=\dfrac{x}{b};\dfrac{y}{a}=\dfrac{b}{x}\)
chúc bạn học tốt
a)\(\dfrac{x}{7}=\dfrac{18}{14}\)
\(\Rightarrow x=\dfrac{7.18}{14}=9\)
b)\(6:x=1\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{6}{x}=\dfrac{7}{4}\)
\(\Rightarrow x=\dfrac{6.4}{7}=\dfrac{24}{7}\)
c)5,7:0,35=(-x):0,45
\(\Leftrightarrow\dfrac{114}{7}=\dfrac{-x}{0,45}\)
\(\Rightarrow\left(-x\right)=\dfrac{114.0,45}{7}=\dfrac{-513}{70}\)
c,M = \(\dfrac{A}{B}\) = \(\dfrac{\sqrt{x}-4}{\sqrt{x}+5}\) : \(\dfrac{\sqrt{x}+3}{\sqrt{x}+5}\)
M = \(\dfrac{A}{B}\) = \(\dfrac{\sqrt{x}-4}{\sqrt{x}+5}\) \(\times\) \(\dfrac{\sqrt{x}+5}{\sqrt{x}+3}\)
M = \(\dfrac{A}{B}\) = \(\dfrac{\sqrt{x}-4}{\sqrt{x}+3}\) = \(\dfrac{\sqrt{x}+3-7}{\sqrt{x}+3}\)
M = 1 - \(\dfrac{7}{\sqrt{x}+3}\)
M \(\in\) Z ⇔ 7 ⋮ \(\sqrt{x}\) + 3 vì \(\sqrt{x}\) ≥ 0 ⇒ \(\sqrt{x}\) + 3 ≥ 3 ⇒ 0< \(\dfrac{7}{\sqrt{x}+3}\) ≤ \(\dfrac{7}{3}\)
⇒ M Đạt giá trị nguyên lớn nhất ⇔ \(\dfrac{7}{\sqrt{x}+3}\) đạt giá trị nguyên nhỏ nhất ⇔ \(\dfrac{7}{\sqrt{x}+3}\) = 1 ⇔ \(\sqrt{x}\) + 3 = 7 ⇔ \(\sqrt{x}\) = 4 ⇔ \(x\) = 16
Mnguyên(max) = 1 - 1 = 0 xảy ra khi \(x\) = 16
a, \(x\cdot\dfrac{-5}{8}=\dfrac{15}{32}\)
\(x=\dfrac{15}{32}:\dfrac{-5}{8}\)
\(x=\dfrac{-3}{4}\)
b, \(\dfrac{3}{10}:x=\dfrac{-9}{20}\)
\(x=\dfrac{3}{10}:\dfrac{-9}{20}\)
\(x=-\dfrac{2}{3}\)
c, \(\dfrac{-1}{4}x+\dfrac{4}{5}=\dfrac{3}{4}\)
\(\dfrac{-1}{4}x=\dfrac{3}{4}-\dfrac{4}{5}\)
\(\dfrac{-1}{4}x=-\dfrac{1}{20}\)
\(x=-\dfrac{1}{20}:\dfrac{-1}{4}\)
\(x=\dfrac{1}{5}\)
d, \(\dfrac{-7}{8}+\dfrac{2}{3}:x=\dfrac{3}{5}\cdot\dfrac{-5}{12}\)
\(\dfrac{-7}{8}+\dfrac{2}{3}:x=-\dfrac{1}{4}\)
\(\dfrac{2}{3}:x=-\dfrac{1}{4}+\dfrac{-7}{8}\)
\(\dfrac{2}{3}:x=\dfrac{5}{8}\)
\(x=\dfrac{2}{3}:\dfrac{5}{8}\)
\(x=\dfrac{16}{15}\)
#YVA6
\(a,x.\dfrac{-5}{8}=\dfrac{15}{32}\)
\(\Leftrightarrow x=\dfrac{15}{32}:\dfrac{-5}{8}\)
\(\Leftrightarrow x=\dfrac{15}{32}.\dfrac{-8}{5}\)
\(\Leftrightarrow x=-\dfrac{3}{4}\)
\(b,\dfrac{3}{10}:x=-\dfrac{9}{20}\)
\(\Leftrightarrow x=\dfrac{3}{10}:\dfrac{-9}{20}\)
\(\Leftrightarrow x=\dfrac{3}{10}.\dfrac{-20}{9}\)
\(\Leftrightarrow x=-\dfrac{2}{3}\)
\(c,-\dfrac{1}{4}x+\dfrac{4}{5}=\dfrac{3}{4}\)
\(\Leftrightarrow-\dfrac{1}{4}x=\dfrac{3}{4}-\dfrac{4}{5}\)
\(\Leftrightarrow-\dfrac{1}{4}x=-\dfrac{1}{20}\)
\(\Leftrightarrow x=-\dfrac{1}{20}\times\left(-4\right)\)
\(\Leftrightarrow x=\dfrac{1}{5}\)
\(d,-\dfrac{7}{8}+\dfrac{2}{3}:x=\dfrac{3}{5}.\dfrac{-5}{12}\)
\(\Leftrightarrow-\dfrac{7}{8}+\dfrac{2}{3}:x=-\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{2}{3}:x=-\dfrac{1}{4}+\dfrac{7}{8}\)
\(\Leftrightarrow\dfrac{2}{3}:x=\dfrac{5}{8}\)
\(\Leftrightarrow x=\dfrac{2}{3}:\dfrac{5}{8}\)
\(\Leftrightarrow x=\dfrac{16}{15}\)
a) Ta có:\(\dfrac{x-3}{x+5}=\dfrac{5}{7}\)
\(\Rightarrow7\left(x-3\right)=5\left(x+5\right)\)
\(\Rightarrow7x-21=5x+25\)
\(\Rightarrow7x-5x=21+25\)
\(\Rightarrow2x=46\)
\(\Rightarrow x=46:2=23\)
\(a,\dfrac{x-3}{x+5}=\dfrac{5}{7}\\ \Leftrightarrow7x-21=5x+25\\ \Leftrightarrow2x=46\\ \Leftrightarrow x=23\)
Vậy......
\(b,\dfrac{x+4}{20}=\dfrac{5}{x+4}\\ \Leftrightarrow\left(x+4\right)^2=100\\ \Leftrightarrow x+4=\pm10\\ \Leftrightarrow x\in\left\{-14;6\right\}\)
Vậy.........