cho đoạn thẳng AB, lấy điểm C\(\in\)đoạn thẳng AB trên cùng nũa mặt phẳng bờ là đường thẳng AB vẽ tam giác đều ACD và BCE
a) c/m AE=BD
b)gọi I,Klà trung điểm AE vafBD,c/m tam giác CIK là tam giác đều
huhu mọi người giải giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ACE và BCD có: AC= AD; ACE= DCB; CE= CB suy ra ACE= BCD (c-g-c) nên AE= BD
b) Từ câu a) suy ra EAC= CDB; AE= BD nên 1/2AE= 1/2BD hay DK= AI
Xét tam giác ACI và DKC: DC= AC; AI= DK (CMT); EAC=CDB (CMT) suy ra ACI= DKC (c-g-c)
suy ra IC= KC; ICA= KDC mà ACI+ ICD= 60 độ suy ra KCD+ ICD= 60 độ
nên tam giác CIK đều (tam giác vuông có 1 góc 60 độ)
lik e mình nhé chắc 100 % là đúng
Câu hỏi của Đông Phí Mạnh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
Câu hỏi của Đông Phí Mạnh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
Câu hỏi của Đông Phí Mạnh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo bài tương tự tại đây nhé.
( Hình vẽ chỉ mang tính chất minh họa )
Lời giải :
+) Do \(\Delta ADC,\Delta BCE\) đều \(\Rightarrow\hept{\begin{cases}AD=DC=AC,\widehat{DAC}=\widehat{ACD}=\widehat{CDA}=60^o\\CE=CB=BE,\widehat{ECB}=\widehat{CBE}=\widehat{BEC}=60^o\end{cases}}\)
+) Xét \(\Delta ACE\) và \(\Delta DCB\) có :
\(\hept{\begin{cases}AC=DC\left(cmt\right)\\\widehat{ACE}=\widehat{DCB}\left(=60^o+\widehat{DCE}\right)\\CE=CB\left(cmt\right)\end{cases}}\)
\(\Rightarrow\Delta ACE=\Delta DCB\left(c-g-c\right)\)
\(\Rightarrow\hept{\begin{cases}AE=DB\\\widehat{AEC}=\widehat{DBC}\Rightarrow\widehat{IEC}=\widehat{KBC}\end{cases}}\)
+) Ta thấy : I, K lần lượt là trung điểm của AE và BD
\(\Rightarrow\hept{\begin{cases}AI=TE=\frac{AE}{2}\\DK=KB=\frac{DB}{2}\end{cases}}\) mà \(AE=DB\left(cmt\right)\)
\(\Rightarrow IE=KB\)
+) Xét \(\Delta IEC\) và \(\Delta KBC\) có :
\(\hept{\begin{cases}IE=KB\left(cmt\right)\\\widehat{IEC}=\widehat{KBC}\left(cmt\right)\\CE=CB\left(cmt\right)\end{cases}}\)
\(\Rightarrow\Delta IEC=\Delta KBC\left(c-g-c\right)\)
\(\Rightarrow\hept{\begin{cases}IC=KC\\\widehat{ICE}=\widehat{KCB}\end{cases}}\)
+) Ta có : \(\widehat{ECB}=\widehat{KCB}+\widehat{ECK}=60^o\)
\(\Rightarrow\widehat{ICE}+\widehat{ECK}=60^o\)
hay \(\widehat{ICK}=60^o\)
+) Xét \(\Delta CIK\) có: \(IC=CK\left(cmt\right)\)
\(\Rightarrow\Delta CIK\) là tam giác cân tại C. Mà : \(\widehat{ICK}=60^o\)
\(\Rightarrow\Delta CIK\) là tam giác đều.
a) Ta có \(\widehat{ACE}=\widehat{DCB}\left(=60^o+\widehat{DCE}\right)\)
Xét tam giác DCB và tam giác ACE có:
DC = AC (gt)
CB = CE (gt)
\(\widehat{ACE}=\widehat{DCB}\) (cmt)
\(\Rightarrow\Delta DCB=\Delta ACE\left(c-g-c\right)\)
\(\Rightarrow DB=AE\) (Hai cạnh tương ứng)
b) Do \(\Delta DCB=\Delta ACE\Rightarrow\widehat{NBC}=\widehat{MEC}\)
Do DB = AE nên ME = NB
Xét tam giác CME và tam giác CNB có:
ME = NB (cmt)
CE = CB (gt)
\(\widehat{MEC}=\widehat{NBC}\) (cmt)
\(\Rightarrow\Delta CME=\Delta CNB\left(c-g-c\right)\)
c) Vì \(\Delta CME=\Delta CNB\Rightarrow CM=CN;\widehat{MCE}=\widehat{NCB}\)
Suy ra \(\widehat{MCE}+\widehat{ECN}=\widehat{NCB}+\widehat{ECN}=\widehat{ECB}=60^o\)
\(\Rightarrow\widehat{MCN}=60^o\)
Xét tam giác CMN có CM = CN nên nó là tam giác cân.
Lại có \(\widehat{MCN}=60^o\) nên CMN là tam giác đều.